Skip to main content
Log in

Application of the ITEM for the modified dispersive water-wave system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce a novel study of obtaining an analytical solutions to the modified dispersive water-wave system. An analytical technique based on the improved \(\tan (\phi /2)\)-expansion method (ITEM) is extended to handle such a system. Description of the method is given and the obtained results reveal that the ITEM is a new significant method for exploring nonlinear partial differential models. By using this method, exact solutions including the hyperbolic function solution, traveling wave solution, soliton solution, rational function solution, and periodic wave solution of this system of equations have been obtained. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alam, M.N., Akbar, M.A., Mohyud-Din, S.T.: A novel (G′/G)-expansion method and its application to the Boussinesq equation. Chin. Phys. B 23(2), 020203 (2014). doi:10.1088/1674-1056/23/2/020203

    Article  Google Scholar 

  • Ali, S., Rizvi, S.T.R., Younis, M.: Traveling wave solutions for nonlinear dispersive water-wave systems with time-dependent coefficients. Nonlinear Dyn. 82, 1755–1762 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Baskonus, H.M., Bulut, H.: New wave behaviors of the system of equations for the ion sound and Langmuir Waves. Waves Random Complex Media 26(4), 1–14 (2016c). doi:10.1080/17455030.2016.1181811

  • Baskonus, H.M., Koç, D.A., Bulut, H.: New travelling wave prototypes to the nonlinear Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Sci. Lett. A 7, 67–76 (2016)

    Google Scholar 

  • Baskonus, H.M., Bulut, H., Atangana, A.: On the complex and hyperbolic structures of longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25, 035022 (2016b). doi:10.1088/0964-1726/25/3/035022

    Article  ADS  Google Scholar 

  • Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media 26, 201–208 (2016a)

    MathSciNet  Google Scholar 

  • Biswas, A.: 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl. Math. Letters 22, 1775–1777 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bulut, H., Baskonus, H.M.: New complex hyperbolic function solutions for the (2+1)-dimensional dispersive long water-wave system. Math. Comput. Appl. 21, 6 (2016). doi:10.3390/mca21020006

    MathSciNet  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33, 1384–1398 (2010b)

    MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. J. 26, 448–479 (2010a)

    MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–753 (2011a)

    Article  MathSciNet  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. Int. J. Mod. Phys. B 25, 2965–2981 (2011b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method. Z. Naturforschung A 64a, 420–430 (2009)

    ADS  Google Scholar 

  • Demiray, H.: Exact solution of perturbed KdV equation with variable dissipation coefficient. Appl. Comput. Math. 16, 12–16 (2017)

  • Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fan, E.: Travelling wave solutions for two generalized Hirota-Satsuma KdV systems. Z. Naturforsch. 56A, 312–319 (2001)

    ADS  Google Scholar 

  • Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  ADS  MATH  Google Scholar 

  • Hasseine, A., Barhoum, Z., Attarakih, M., Bart, H.J.: Analytical solutions of the particle breakage equation by the Adomian decomposition and the variational iteration methods. Adv. Powder Tech. 24, 252–256 (2013)

    Article  Google Scholar 

  • Huang, W.H.: Periodic folded waves for a \((2+1)\)-dimensional modified dispersive water wave equation. Chin. Phys. B 18, 3163–3168 (2009)

    Article  ADS  Google Scholar 

  • Liu, Q., Zhou, Y., Zhang, W.: Bifurcation of travelling wave solutions for the modified dispersive water wave equation. Nonlinear Anal. 69, 151–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D.S., Zhang, H.Q.: New families of non-travelling wave solutions to the \((2+1)\)-dimensional modified dispersive water-wave system. Chin. Phys. 13, 1377–1381 (2004)

    Article  ADS  Google Scholar 

  • Lou, S.Y., Hu, X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401–6427 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Wu, H., He, J.: Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A 364, 29–32 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Fuchssteiner, Y.: Explicit and exact solutionns to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Nonlinear Mech. 31, 329–338 (1996)

    Article  MATH  Google Scholar 

  • Ma, W.X., Maruno, K.-I.: Complexiton solutions of the Toda lattice equation. Phys. A 343, 219–237 (2004)

    Article  MathSciNet  Google Scholar 

  • Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 107978 (2015c). doi:10.1155/2015/107978

  • Manafian, J.: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 1–20 (2015)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M., Bekir, A.: Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 2, 243–268 (2016)

    Article  MathSciNet  Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(\(\phi /2\))-expansion method. Optik 127, 4222–4245 (2016)

    Article  ADS  Google Scholar 

  • Manafian, J.: Application of the ITEM for the system of equations for the ion sound and Langmuir waves. Opt. Quantum Electron. 49(17), 1–26 (2017)

    Google Scholar 

  • Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the \((G^{\prime }/G)\)-expansion method. Pramana J. Phys. 130, 31–52 (2015b)

    Article  ADS  Google Scholar 

  • Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015a)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: Application of \(tan(\phi /2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016a)

    Article  ADS  Google Scholar 

  • Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quantum Electron. 48, 1–32 (2016b)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via tan(\(\phi /2\))-expansion method. Optik 127, 5543–5551 (2016c)

    Article  ADS  Google Scholar 

  • Ma, W.X., You, Y.: Solving the Kortewegde Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc 357, 1753–1778 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fractals 22, 395–406 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Zhou, D.T.: Explicit exact solution of a generalized KdV equation. Acta Math. Sci. 17, 168–174 (1997)

    Google Scholar 

  • Meng, D.X., Gao, Y.T., Wang, L., Xu, P.B.: Elastic and inelastic interactions of solitons for a variable-coefficient generalized dispersive water-wave system. Nonlinear Dyn. 69, 391–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohyud-Din, S.T., Noor, M.A., Noor, K.I.: Some relatively new techniques for nonlinear problems. Math. Probl. Eng. 1–25 (2009b). doi:10.1155/2009/234849

  • Mohyud-Din, S.T., Noor, M.A., Noor, K.I.: Traveling wave solutions of seventh-order generalized KdV equations using He’s polynomials. Int. J. Nonlinear Sci. Numer. Simul. 10, 223–229 (2009a)

    Article  MATH  Google Scholar 

  • Mohyud-Din, S.T., Noor, M.A., Noor, K.I., Hosseini, M.M.: Variational iteration method for re-formulated partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 11(2), 87–92 (2010a)

    MathSciNet  Google Scholar 

  • Mohyud-Din, S.T., Noor, M.A., Waheed, A.: Exp-function method for generalized traveling solutions of Calogero–Degasperis–Fokas equation. Z. Naturforschung A 65a, 78–84 (2010)

    ADS  Google Scholar 

  • Mohyud-Din, S.T., Yildirim, A., Sariaydin, S.: Numerical soliton solution of the Kaup–Kupershmidt equation. Int. J. Numer. Methods Heat Fluid Flow 21(3), 272–281 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohyud-Din, S.T., Yildirim, A., Sezer, S.A.: Numerical soliton solution of the Kaup–Kupershmidt equation. Int. J. Numer. Methods Heat Fluid Flow 21(7), 822–827 (2011b)

    Article  MathSciNet  Google Scholar 

  • Mohyud-Din, S.T., Negahdary, E., Usman, M.: A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations. Int. J. Numer. Methods Heat Fluid Flow 22, 641–658 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohyud-Din, S.T., Khan, Y., Faraz, N., Yildirim, A.: Exp-function method for solitary and periodic solutions of Fitzhugh–Nagumo equations. Int. J. Numer. Methods Heat Fluid Flow 22(3), 335–341 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  • Nawaz, T., Yildirim, A., Mohyud-Din, S.T.: Analytical solutions Zakharov–Kuznetsov equations. Adv. Powder Technol. 24, 252–256 (2013)

    Article  Google Scholar 

  • Noor, M.A., Mohyud-Din, S.T., Waheed, A.: Exp-function method for generalized traveling solutions of master partial differential equations. Acta Appl. Math. 104(2), 131–137 (2008). doi:10.1007/s10440-008-9245-z

    Article  MathSciNet  MATH  Google Scholar 

  • Noor, M.A., Mohyud-Din, S.T., Waheed, A., Al-Said, E.A.: Exp-function method for traveling wave solutions of nonlinear evolution equations. Appl. Math. Comput. 216, 477–483 (2010b)

    MathSciNet  MATH  Google Scholar 

  • Rashidi, M.M., Hayat, T., Keimanesh, T., Yousefian, H.: A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method. Heat Transf. Asian Res. 42, 31–45 (2013)

    Article  Google Scholar 

  • Sabattia, M., Fabbrini, F., Harfouche, A., et al.: Evaluation of biomass production potential and heating value ofhybrid poplar genotypes in a short-rotation culture in Italy. Ind. Crops Prod. 61, 62–73 (2014)

    Article  Google Scholar 

  • Tang, X.Y., Lou, S.Y., Zhang, Y.: Localized exicitations in \((2+1)\)-dimensional systems. Phys. Rev. E 66, 046601 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Tang, X.Y., Lou, S.Y.: Extended multilinear variable separation approach and multivalued localized excitations for some \((2+1)\)-dimensional integrable systems. J. Math. Phys. 44, 4000–4025 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wen, X.Y., Xu, X.G.: Multiple soliton solutions and fusion interaction phenomena for the (2+1)-dimensional modified dispersive water-wave system. Appl. Math. Comput. 219, 7730–7740 (2013)

    MathSciNet  MATH  Google Scholar 

  • Zheng, C.L., Fang, J.P., Chen, L.Q.: Localized excitations with and without propagating properties in \((2+1)\)-dimensions obtained by a mapping approach. Chin. Phys. 14, 676–682 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Paper is Published as Part of a Research Project Supported by the University of Tabriz Research Affairs Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Manafian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakestani, M., Manafian, J. Application of the ITEM for the modified dispersive water-wave system. Opt Quant Electron 49, 128 (2017). https://doi.org/10.1007/s11082-017-0967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0967-x

Keywords

Mathematics Subject Classification

Navigation