Study of a nano optical antenna for intersatellite communications

  • Rui David Furtado Ribeiro Gomes
  • Mª João Martins
  • António Baptista
  • João Paulo N. Torres


Nowadays, communications are moving to the optical frequencies, due to the extended bandwidth available, and the saturation of the RF spectrum. The dimensions of the antennas decrease with the operating wavelength. Therefore, in the optical domain, building an antenna may imply the design of a device with dimensions of several nanometers. The development of nanotechnology has enabled the development of these new devices, known as nanoantennas or optical antennas. New phenomenology has appeared with these new devices. In 2006 it was discovered that the transmission of light through arrays of subwavelength holes in a metal, gives rise to the phenomenon of extraordinary optical transmission, or in other words the amount of optical energy appearing on the other side of the metal is much greater than was expected by theoretical studies. The applications of these new antennas are fascinating, and are present in a very broad range of areas from biophotonics to quantum communication, data processing or optical wireless communications. This paper aims at studying and characterizing, in a classical perspective, an optical antenna formed by an array of subwavelength holes in a metal sheet that could be integrated in the transmitter or receiver ends of an intersatellite optical communication system.


Nanotechnology Optical antennas Extraordinary optical transmission Subwavelength Intersatellites links 



This work was supported by national founds through the Fundação para a Ciência e a Tecnologia (FCT) of the Portuguese Government with reference UID/EEA/50008/2013.


  1. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937 ADSCrossRefGoogle Scholar
  2. Bethe, H.A.: Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944). doi: 10.1103/PhysRev.66.163 ADSMathSciNetCrossRefMATHGoogle Scholar
  3. Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(2), 1–40 (2012). doi: 10.1088/0034-4885/75/2/024402 CrossRefGoogle Scholar
  4. Bouwkamp, C.J.: On Bethe’s theory of diffraction by small holes. Philips Res. Rep. 5, 321–332 (1950)MathSciNetGoogle Scholar
  5. Bouwkamp, C.J.: Diffraction theory. Rep. Prog. Phys. 17(1), 35–100 (1954). doi: 10.1088/0034-4885/17/1/302
  6. Faria, J.A.B.: Óptica—Fundamentos e Aplicações. Editorial Presença, Lisboa (1995)Google Scholar
  7. Garcia-Vidal, F.J., Martin-Moreno, L., Ebbesen, T.W., Kuipers, L.: Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010). doi: 10.1103/RevModPhys.82.729 ADSCrossRefGoogle Scholar
  8. Hecht, E.: Óptica, 3 ed., Av. de Berna, Lisboa: Fundação Calouste Gulbenkian, pp. 495–578 (2012)Google Scholar
  9. Krasnok, A., Belov, P., Miroshnichenko, A., Kuznetsov, A., Luk’yanchuk, B., Kivshar, Y.: All-dielectric optical nanoantennas. Physics – Optics. 1–33 (2014)  Google Scholar
  10. Kumar, A.: Optical Nano-Antennas: Fabrication, Characterization and Applications, Illinois (2011)Google Scholar
  11. Logotheditis, S.: Nanotechnology: Principles and Applications. In: NanoScience and Technology, pp. 1–22. Springer (2012). doi: 10.1007/978-3-642-22227-6_1
  12. Marino, A.M., Piredda, G.: Diffraction by Small Circular Aperture, 1–6 (2016)Google Scholar
  13. Martins, M.A., Trindade, T.: Os nanomateriais e a descoberta de novos mundos na bancada do químico. Química Nova. 35(7), 1434–1446 (2012)Google Scholar
  14. Martins, R.: Nanotecnologia - Breve contetualização sobre as Aplicações e Implicações, Revista Militar (2539/2540), pp. 675–699 (2013)Google Scholar
  15. Novotny, L.: From near-field optics to optical antennas. Physics Today. 64(7), 47–51 (2011). doi: 10.1063/PT.3.1167
  16. Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press. (2006). doi: 10.1017/CBO9780511813535
  17. Olkkonen, J.: Finite difference time domain studies on sub-wavelength aperture structures. VTT Publications 745, 32–40 (2010)Google Scholar
  18. Pitarke, J.M., Silkin, V.M., Chulkov, E.V. Echenique, P.M.: Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics 70(1), 1–87 (2007). doi: 10.1088/0034-4885/70/1/R01
  19. Ribeiro, T.T.: As Operações Militares na era da Informação e da Comunicação. Proelium-Revista da Academia Militar (2003)Google Scholar
  20. Skigin, D., Lester, M.: Commentary: Optical nanoantennas: from communications to super-resolution. J. Nanophoton 5(1), 050303 (2011). doi: 10.1117/1.3595688
  21. Treacy, M.M.J.: Dynamical diffraction in metallic optical gratings. Appl. Phys. Lett. 75, 606–608 (1999). doi: 10.1063/1.124455 ADSCrossRefGoogle Scholar
  22. Van Hulst, N., Novotny, L.: Antennas for light. Nature Photonics. 5, 83–90 (2011). doi: 10.1038/nphoton.2010.237 Google Scholar
  23. Vial, A., Grimault, A., Macías, D., Barchiesi, D., Chapelle, M.L.: Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B., American Physical Society 71(1), 085416 (2005). doi: 10.1103/PhysRevB.71.085416
  24. Weiner, J.: The physics of light transmission through subwavelenght apertures and aperture arrays. Reports on Progress in Physics 72(6), 064401 (2009). doi: 10.1088/0034-4885/72/6/064401
  25. Wenger, J.: Aperture optical antennas, pp. 1–24. Cambridge University Press (2014)Google Scholar
  26. Wissert, M.D., Schell, A.W., Ilin, K.S., Siegel, M., Eisler, H.-J.: Nanoengineering and characterization of gold nanoantennas with enhanced integrated scattering properties. Nanotechnology 20(42), 425203 (2009). doi: 10.1088/0957-4484/20/42/425203

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Academia Militar, DCTELisboaPortugal
  2. 2.Instituto Superior Técnico, Universidade de LisboaLisboaPortugal
  3. 3.Instituto de Telecomunicações, Instituto Superior Técnico, Univesidade de LisboaLisboaPortugal

Personalised recommendations