Concentration quenching of laser dyes fluorescence in variety of solid matrices and liquid solutions

  • Ya. V. Kravchenko
  • M. F. Koldunov
  • V. A. Petukhov
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies


Organic dye lasers are widely used in science and technology. Impregnation of dyes into polymers demonstrates many technical advantages, especially in the case when the dye monomer solution is filled inside the cavities of nanoporous glasses and then polymerized within the pores (PFNPG-P composite). This allows to create a rigid true solid-state active elements. Peculiarities of luminescence in such compositions are the subject of the work. Luminescence of 12 laser dyes was studied in liquid solutions (ethanol, MMA) and solid matrixes such as PMMA and PFNPG-P composite. Concentration dependences were measured for pyrromethenes, phenalemines, xanthenes and other types of dyes to define the quenching threshold of luminescence.


Solid-state dye laser PMMA Nanoporous glass Luminescence quenching Pyrromethene dyes Phenalemines dyes 


  1. Aldag, H.R., et al.: Microporous glass-polymer composite as a new material for solid-state dye lasers: I. Material properties. Quantum Electron. 30(11), 954–958 (2000a)ADSCrossRefGoogle Scholar
  2. Aldag, H.R., et al.: A microporous glass-polymer composite as a new material for solid-state dye lasers: II. Lasing properties. Quantum Electron. 30(12), 1055–1059 (2000b)ADSCrossRefGoogle Scholar
  3. Dolotov, S.M., et al.: An efficient solid-state laser based on a nanoporous glass—polymer composite doped with phenalemine dyes emitting in the 600–660-nm region. Quantum Electron. 32(8), 669–674 (2002)ADSCrossRefGoogle Scholar
  4. Dyumaev, K.M., Manenkov, A.A., Maslyukov, A.P., Matyushin, G.A., Nechitaylo, V.S., Prokhorov, A.M.: Interaction of laser radiation with optical polymers. In: Proceedings of the GPI, vol. 33. Nauka, Moscow, 1991 (in russian) Google Scholar
  5. Green, A.P., Buckley, A.R.: Solid state concentration quenching of organic fluorophores in PMMA. Phys. Chem. Chem. Phys. 17, 1435–1440 (2015)CrossRefGoogle Scholar
  6. Koldunov, M.F., et al.: Relation between spectral and lasing properties for dyes of different classes. Quantum Electron. 34(2), 115–119 (2004)ADSCrossRefGoogle Scholar
  7. Levshin, L.V., Saletsky, A.M.: Optical Methods for Studying Molecular Systems. M. Ed. Moscow State University, 1994 (in russian) Google Scholar
  8. Setiawan, D., Kazaryan, A., Martoprawiro, M.A., Filatov, M.: A first principles study of fluorescence quenching in rhodamine B dimers: How can quenching occur in dimeric species? Phys. Chem. Chem. Phys. 12, 11238–11244 (2010)CrossRefGoogle Scholar
  9. Zehentbauer, F.M., Moretto, C., Stephen, R., Thevar, T., Gilchrist, J.R., Pokrajac, D., Richard, K.L., Kiefer, J.: Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 147–151 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ya. V. Kravchenko
    • 1
  • M. F. Koldunov
    • 1
  • V. A. Petukhov
    • 2
  1. 1.General Physics Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations