Modeling of active plasmonic coupler and filter based on metal-dielectric-metal waveguide

Article
  • 290 Downloads

Abstract

Optical functions such as filtering and coupling play an important role in Nano-optics systems. This paper discusses the ability of MDM plasmonic slot waveguide to realize these functions with some help from stub resonators connected either in parallel or in series with the slot waveguide according to the needed function. These resonators are filled with an active material has a tunable absorption coefficient (K) which indicates the power level of an external control signal. The adjustable parameters of the stub resonators can control the properties of our devices. At our desired optical wavelength λ = 1550 nm; first, we introduce a unidirectional coupler satisfies an insertion loss (coupler factor) closes to 0 dB and a coupling ratio closes to 100% at the desired output channel. Second a band-reject filter satisfies a pass-band transmission close to 90% and has a forbidden band width of 75 nm located in the frequency range of (1510–1585) nm. The components would be useful in the optical interconnect networks, photonic integrated circuits, and wavelength division multiplexing.

Keywords

Plasmonics Waveguides Directional couplers and filters 

References

  1. Atwater, H.A.: The promise of plasmonics. Sci. Am. 296, 56–63 (2007)CrossRefGoogle Scholar
  2. Deshko, Yury, Chen, Zhiyi, Krusin-Elbaum, Lia, Menon, Vinod, Trevino, Jacob, Khanikaev, Alexander: Propagation of surface plasmon polaritons in thin films of topological insulators. Opt. Express 24, 7398–7410 (2016)ADSCrossRefGoogle Scholar
  3. Dickson, W., Wurtz, G.A., Evans, P.R., Pollard, R.J., Zayats, A.V.: Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 8, 281–286 (2008)ADSCrossRefGoogle Scholar
  4. Dolatabady, A., Granpayeh, N.: Plasmonic directional couplers based on multi-slit waveguides. Plasmon. 1–8 (2016). doi: 10.1007/s11468-016-0303-5
  5. Guan, J., Zhu, X.: Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J. Opt. Soc. Am. B 26, 1263–1268 (2009)CrossRefGoogle Scholar
  6. Huang, Yin, Min, Changjun, Yang, Liu, Veronis, Georgios: Nanoscale plasmonic devices based on metal-dielectric-metal stub resonators. Int. J. Opt. 2012, 1–13 (2012)CrossRefGoogle Scholar
  7. Jäckel, H., Bona, G.L., Hafner, C.: Ultrafast, compact, and energy efficient all-optical switches based on a saturable absorbing cavity. IEEE J. Quantum Electron. 50(12), 1–10 (2014). doi: 10.1109/JQE.2014.2365995 Google Scholar
  8. Lalanne, P., Hugonin, J.P., Rodier, J.C.: Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95(26), 263902 (2005)ADSCrossRefGoogle Scholar
  9. Lin, X.S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008)ADSCrossRefGoogle Scholar
  10. MacDonald, K.F., Sámson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)ADSCrossRefGoogle Scholar
  11. Min, C., Veronis, G.: “All-optical absorption switches in subwavelength metal-dielectricmetal plasmonic waveguides “, In: Proceedings of SPIE, Vol. 7394, pp., (2009)Google Scholar
  12. Min, C., Wang, P., Chen, C., Deng, Y., Lu, Y., Ming, H., Ning, T., Zhou, Y., Yang, G.: All-optical switching in sub-wavelength metallic grating structure containing nonlinear optical materials. Opt. Lett. 33, 869–871 (2008)ADSCrossRefGoogle Scholar
  13. Nirmal, M., et al.: Observation of the dark exciton in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995)ADSCrossRefGoogle Scholar
  14. Pacifici, D., Lezec, H.J., Atwater, H.A.: All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 1, 402–406 (2007)ADSCrossRefGoogle Scholar
  15. Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, New York (1985)Google Scholar
  16. Shin, Wonseok, Fan, Shanhui: Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 231, 3406–3431 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. Wang, H., Yang, J., Zhang, J., Huang, J., Wu, W., Chen, D., Xiao, G.: Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Opt. Lett. 41, 1233–1236 (2016)ADSCrossRefGoogle Scholar
  18. Wurtz, G.A., Zayats, A.V.: Nonlinear surface plasmon polaritonic crystals. Laser Photonics Rev. 2, 125–135 (2008)CrossRefGoogle Scholar
  19. Yu, Z., Veronis, G., Fan, S., Brongersma, M.L.: Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92(4), 041117 (2008). doi: 10.1063/1.2839324 ADSCrossRefGoogle Scholar
  20. Zhang, Z., Zhang, L., Li, H., Chen, H.: Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Plasmonics 14, 1151–1155 (2016)Google Scholar
  21. Zhou, W., Huang, X.: Active control of optical signals in the plasmonic waveguides. Int. J. Electr. Energy 1(4), 304–307 (2013)ADSCrossRefGoogle Scholar
  22. Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Communication Department, Faculty of EngineeringDelta UniversityGamasahEgypt
  2. 2.Electrical Engineering Department, Faculty of EngineeringKafrelshiekh UniversityKafrelshiekhEgypt
  3. 3.Communication and Communications Deptartment, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations