Wavelength division multiplexing module with large core optical polymer planar splitter and multilayered dielectric filters



The paper reports on the design, fabrication and characterization of low cost and simple fabrication method of the planar wavelength division multiplexing modules with large core input/outputs multimode optical polymer waveguides. The modules are consisting on optical 1x2Y splitter assembled with multilayered dielectric filters and large core plastic fibers. The splitters were designed by beam propagation method using BeamPROP software for input/outputs polymer fibers with 1 mm diameter. Acrylic-based polymers were used as core optical waveguides and poly(methyl methacrylate) were used as substrate and protection cover. Multilayered dielectric filters for wavelengths 532 and 650 nm were used for wavelength division multiplexing. Measurement of the optical insertion losses proved that the insertion optical loss could be lower than 8.1 dB at 650 nm and 8.7 dB at 532 nm. The best module had insertion losses 6.8 dB at 650 nm and 6.9 dB at 532 nm. The wavelength division multiplexing modules can be applied for new application in low cost short distances optical networks.


Wavelength division multiplexing Optical splitter Multilayered dielectric filters Large core optical waveguides Polymer 



This work was supported by the research program of Czech Technical University in Prague project name Micro and Nanostructures and Devices (No. OHK3-013/17).


  1. Barbarin, Y., Leijtens, X.J.M., Bente, E.A.J.M., Louzao, C.M., Kooiman, J.R., Smit, M.K.: Extremely small AWG demultiplexer fabricated on InP by using a double-etch process. IEEE Photonics Technol. Lett. 16, 2478–2480 (2004)ADSCrossRefGoogle Scholar
  2. Barwicz, T., Popovic, M.A., Rakich, P.T., Watts, M.R., Haus, H.A., Ippen, E.P., Smith, H.I.: Microring-resonator-based add-drop filters in SiN: fabrication and analysis. Opt. Express 12, 1437–1442 (2004)ADSCrossRefGoogle Scholar
  3. Beltrami, D.R., Love, J.D., Ladouceur, F.: Multimode planar devices. Opt. Quantum Electron. 31, 307–326 (1999)CrossRefGoogle Scholar
  4. Ehsan, A.A., Shaari, S., Rahman, M.K.A.: Design and fabrication of an acrylic-based 1 × 2 POF coupler using CNC machining. In: Proceedings of IEEE International Conference on Semiconductor Electronics, Johor Bahru, pp. 340–344 (2008)Google Scholar
  5. Ehsan, A.A., Shaari, S., Abd Rahman, M.K.: Metal-based 1 × 2 and 1 × 4 asymmetric plastic optical fiber coupler for optical code generating devices. Prog. Electromagn. Res. 101, 1–16 (2010)CrossRefGoogle Scholar
  6. Ehsan, A.A., Shaari, S., Rahman, M.K.A.: Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region. Opt. Rev. 18, 80–85 (2011)CrossRefGoogle Scholar
  7. Giles, C.R.: Lightwave applications of fiber Bragg gratings. J. Lightwave Technol. 15, 1391–1404 (1997)ADSCrossRefGoogle Scholar
  8. He, J.J., Lamontagne, B., Delage, A., Erickson, L., Koteles, E.S.: Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP. J. Lightwave Technol. 16, 631–638 (1998)ADSCrossRefGoogle Scholar
  9. Kagami, M., Yamashita, T., Ito, H.: Polymer optical waveguide devices for low-cost WDM module. Proc. SPIE 4106, 11–20 (2000)ADSCrossRefGoogle Scholar
  10. Kawakami, N., Kobayashi, J., Hikita, M., Kudo, A., Yamamoto, F., Imamura, S.: Filter-embedded four-channel WDM module fabricated from fluorinated polyimide. J. Lightwave Technol. 24, 2388–2393 (2006)ADSCrossRefGoogle Scholar
  11. Kim, K.T., Kim, M.K.: Low-loss 1 × 2 plastic optical fiber coupler incorporating a tapered polymeric waveguide and plastic optical fiber transition regions. Jpn. J. Appl. Phys. 51, 8504–8506 (2012)CrossRefGoogle Scholar
  12. Klotzbuecher, T., Braune, T., Dadic, D., Sprzagala, M., Koch, A.: Fabrication of optical 1 × 2 POF splitters using the laser-LIGA technique. In: Proceedings Laser Micromachining for Optoelectronic Device Fabrication, vol. 4941, pp. 121–132 (2003)Google Scholar
  13. Mizuno, H., Sugihara, O., Kaino, T., Okamoto, N., Ohama, M.: Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers. Jpn. J. Appl. Phys. 44, 8504–8506 (2005)ADSCrossRefGoogle Scholar
  14. Park, H.J., Lim, K.S., Kang, H.S.: Low-cost 1 × 2 plastic optical beam splitter using a V-type angle polymer waveguide for the automotive network. Opt. Eng. 50, 075002–075004 (2011)ADSCrossRefGoogle Scholar
  15. Pinzon, P.J., Garcilopez, I.P., Vazquez, C.: Efficient multiplexer/demultiplexer for visible WDM transmission over SI-POF technology. J. Lightwave Technol. 33, 3711–3717 (2015)ADSCrossRefGoogle Scholar
  16. Pinzon, P.J., Perez, I., Vazquez, C.: Visible WDM system for real-time multi-Gb/s bidirectional transmission over 50-m SI-POF. IEEE Photonics Technol. Lett. 28, 1696–1699 (2016)ADSCrossRefGoogle Scholar
  17. Prajzler, V., Lyutakov, O., Huttel, I., Spirkova, J., Jerabek, V.: Design of polymer wavelength splitter 1310 nm/1550 nm based on multimode interferences. Radioengineering 19, 606–609 (2010)Google Scholar
  18. Prajzler, V., Strilek, E., Spirkova, J., Jerabek, V.: Design of the novel wavelength triplexer using multiple polymer microring resonators. Radioengineering 21, 258–263 (2012a)Google Scholar
  19. Prajzler, V., Pham, N.K., Spirkova, J.: Design, fabrication and properties of the multimode polymer planar 1x2Y optical splitter. Radioengineering 21, 1202–1207 (2012b)Google Scholar
  20. Prajzler, V., Neruda, M., Spirkova, J.: Planar large core polymer optical 1 × 2 and 1 × 4 splitters connectable to plastic optical fiber. Radioengineering 22, 751–757 (2013)Google Scholar
  21. Prajzler, V., Mastera, R., Jerabek, V.: Large core planar 1 × 2 optical power splitter with acrylate and epoxy resin waveguides on polydimetylsiloxane substrate. Radioengineering 23, 488–495 (2014)Google Scholar
  22. Prajzler, V., Mastera, R., Spirkova, J.: Large core three branch polymer power splitters. Radioengineering 24, 885–891 (2015)CrossRefGoogle Scholar
  23. Prajzler, V., Knietel, M., Maštera, R.: Large core optical planar splitter for visible and infrared region. Opt. Quantum Electron. 48, 155 (2016)Google Scholar
  24. Rabiei, P., Steier, W.H., Zhang, C., Dalton, L.R.: Polymer micro-ring filters and modulators. IEEE J. Lightwave Technol. 20, 1968–1975 (2002)ADSCrossRefGoogle Scholar
  25. Sam, Y.L., Won, Y.H.: A compact and low-loss 1 × 2 wavelength MUX/DEMUX based on a multimode-interference coupler using quasi state. Microw. Opt. Technol. Lett. 41, 615–627 (2004)CrossRefGoogle Scholar
  26. Sasaki, K., Ohno, F., Motegi, A., Baba, T.: Arrayed waveguide grating of 70 × 60 µm2 size based on Si photonic wire waveguides. Electron. Lett. 41, 801–802 (2005)CrossRefGoogle Scholar
  27. Song, J.H., Lim, J.H., Cho, J., Han, D.K., Lee, J., Lee, Y.S., Jung, S., Oh, Y., Jiang, D.H., Lee, K.S.: Thin film filter-embedded triplexing filters based on directional couplers for FTTH networks. IEEE Photonics Technol. Lett. 17, 1668–1700 (2005)ADSCrossRefGoogle Scholar
  28. Takezewa, Y., Akasaka, S., Ohara, S., Ishibashi, T., Asano, H., Taketani, N.: Low excess losses in a Y-branching plastic optical waveguide formed through injection molding. Appl. Opt. 33, 2307–2312 (1994)ADSCrossRefGoogle Scholar
  29. Xiao, J., Liu, X., Sun, X.: Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures. Opt. Express 15, 8300–8308 (2007)ADSCrossRefGoogle Scholar
  30. Ziemann, O., Krauser, J., Zamzow, P.E., Daum, W.: POF Handbook, 2nd edn, pp. 509–510. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Microelectronics, Faculty of Electrical EngineeringCzech Technical UniversityPragueCzech Republic

Personalised recommendations