Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays

  • Debao Zhang
  • Yawei Kuang
  • Xuekun Hong
  • Yushen Liu
  • Xifeng Yang
Article
  • 145 Downloads
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016

Abstract

In this work, in order to enhance the light absorption in one micron thick crystalline silicon solar cells, a back reflecting and rear located plasmonic nanodisk scheme is proposed. We investigate the scattering properties of aluminum nanostructures located at the back side and optimize them for enhancing absorption in the silicon layer by using finite difference time domain simulations. The results indicate that the period and diameters of nanodisks, thickness of spacer layer have a strong impact on short circuit current enhancements. The optimized Al nanoparticle arrays embedded in rear located SiO2 layer enhance J sc with an increase of 47% from the non-plasmonic case of 18.9 to 27.8 mA/cm2 when comparing with a typical stack with a planar aluminum back reflector and a back reflector with plasmonic nanoparticles. This finding could lead to improved light trapping within a thin silicon solar cell device.

Keywords

Plasmon enhancement Rear nanoparticle array Surface plasmon Thin film solar cell 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 11347021 and 61404012).

References

  1. Akimov, Y.A., Koh, W.S.: Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1), 155–161 (2011)CrossRefGoogle Scholar
  2. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)ADSCrossRefGoogle Scholar
  3. Beck, F.J., Mokkapati, S., Polman, A., Catchpole, K.R.: Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl. Phys. Lett. 96(3), 033113-1–033113-3 (2010)ADSCrossRefGoogle Scholar
  4. Beck, F.J., Verhagen, E., Mokkapati, S., Polman, A., Catchpole, K.R.: Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express 19(102), A146–A156 (2011)ADSCrossRefGoogle Scholar
  5. Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008)ADSCrossRefGoogle Scholar
  6. Ferry, V.E., Munday, J.N., Atwater, H.A.: Design considerations for plasmonic photovoltaics. Adv. Mater. 22(43), 4794–4808 (2010)CrossRefGoogle Scholar
  7. Hu, W., Wang, L., Chen, X., Guo, N., Miao, J., Yu, A., Lu, W.: Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Opt. Quantum Electron. 45, 713–720 (2013)CrossRefGoogle Scholar
  8. Langhammer, C., Schwind, M., Kasemo, B., Zoric, I.: Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)ADSCrossRefGoogle Scholar
  9. Liang, J., Hu, W., Ye, Z., Liao, L., Li, Z., Chen, X., Lu, W.: Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure. J. Appl. Phys. 115(18), 184504-1–184504-6 (2014)ADSCrossRefGoogle Scholar
  10. Lim, S.H., Mar, W., Matheu, P., Derkacs, D., Yu, E.T.: Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J. Appl. Phys. 101(10), 104309-1–104309-7 (2007)ADSCrossRefGoogle Scholar
  11. Malinsky, M.D., Kelly, K.L., Schatz, G.C., Van Duyne, R.P.: Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B 105(12), 2343–2350 (2001)CrossRefGoogle Scholar
  12. Miao, J., Hu, W., Jing, Y., Luo, W., Liao, L., Pan, A., Wu, S., Cheng, J., Chen, X., Lu, W.: Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 11(20), 2392–2398 (2015)CrossRefGoogle Scholar
  13. Ouyang, Z., Pillai, S., Beck, F., Kunz, O., Varlamov, S., Catchpole, K.R., Campbell, P., Green, M.A.: Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. Appl. Phys. Lett. 96(26), 261109-1–261109-3 (2010)ADSCrossRefGoogle Scholar
  14. Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105-1–093105-8 (2007)ADSCrossRefGoogle Scholar
  15. Piller, H., Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, New York (1985)Google Scholar
  16. Schaadt, D.M., Feng, B., Yu, E.T.: Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86(6), 063106-1–063106-3 (2005)ADSCrossRefGoogle Scholar
  17. Spinelli, P., Hebbink, M., De Waele, R., Black, L., Lenzmann, F., Polman, A.: Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 11(4), 1760–1765 (2011)ADSCrossRefGoogle Scholar
  18. Stuart, H.R., Hall, D.G.: Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73(26), 3815–3817 (1998)ADSCrossRefGoogle Scholar
  19. Winans, J.D., Hungerford, C., Shome, K., Rothberg, L.J., Fauchet, P.M.: Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both. Opt. Express 23(3), A92–A105 (2015)ADSCrossRefGoogle Scholar
  20. Zhang, D., Yang, X., Hong, X., Liu, Y., Feng, J.: Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt. Quantum Electron. 47(6), 1421–1427 (2015)CrossRefGoogle Scholar
  21. Zhang, D., Yang, X., Hong, X., Liu, Y., Feng, J.: Scattering of light into thin film solar cells by rear located hemispherical silver nanoparticles. Opt. Quantum Electron. 48(2), 120-1–120-7 (2016)CrossRefGoogle Scholar
  22. Zhu, Z., Zou, Y., Hu, W., Li, Y., Gu, Y., Cao, B., Guo, N., Wang, L., Song, J., Zhang, S., Gu, H.: Near-infrared plasmonic 2D semimetals for applications in communication and biology. Adv. Funct. Mater. 26(11), 1793–1802 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Debao Zhang
    • 1
  • Yawei Kuang
    • 1
  • Xuekun Hong
    • 1
  • Yushen Liu
    • 1
  • Xifeng Yang
    • 1
  1. 1.Department of PhysicsChangshu Institute of TechnologyChangshuChina

Personalised recommendations