Advertisement

Linear and nonlinear optical properties of fluorescein sodium salt doped droplet

  • Seyyed Mahdi Shavakandi
  • Soheil Sharifi
Article

Abstract

The Uv-Vis, fluorescence, Raman spectroscopy and Z-scan were used to study optical properties of fluorescein sodium salt (FSS) in AOT/Oil/Water microemaulsion. The FSS-microemulsion was prepared by two types of Oil (Heptane and Hexane) at two molar ratios of water to surfactant (X = 3 and 8), different droplet concentrations at constant ratios of dye in water (Y = FSS/water). In the AOT microemulsion media, both the emission and absorption spectra of the FSS present a red shift with respect to droplet concentration and water droplet size. A change is molecular structure was observed from Anion to Dianionic by increase of droplet concentration. The Raman spectra shows, the polarity of samples doesn’t change with change of droplet concentration. The ratios of the excited state to the ground state of dipole moments (μeg) of FSS-microemulsion were determined by perturbation theory. At the same dye concentrations in samples, the μeg depending on the oil type (Oil polarity) and size of water droplet (X) of the microemulsion. The dipole moment of the ground sate is decreasing by decrease of the droplet size and increase of the droplet concentration. The FSS in both microemulsion systems is localized in the interface of droplet because of the negative interface of AOT and the probabilities, the dye aggregation inside of the droplets change by the size of droplet and it can change the dipole moment of the ground state. The photophysics properties tend to bulk water with the increase of the droplet size. The nonlinear optical properties of FSS/AOT/Heptane/Water microemaulsion were investigated. The magnitude of the third-order nonlinear refractive index (n 2) and nonlinear absorption coefficient (ß) the second order hyperpolarizabilities (γR) and the real third order susceptibilities (χR) were measured using single-beam z-scan at different droplet concentration and two molar ratio. The results shows, the ratio of dipole moment (μeg) has behavior similar to the 1/γR.

Keywords

Fluorescein sodium salt Fluorescence Droplet Z-scan Nonlinear optic 

References

  1. Amirkhani, M., Sharifi, S., Funari, S.S., Marti, O.: Depletion induced sphere-cylinder transition in C12E5 microemulsion: a Small-Angle X-ray Scattering study. Mol. Phys. 112(12), 1702–1709 (2014)ADSCrossRefGoogle Scholar
  2. Biswas, S., Bhattacharya, S.C., Sen, P.K., Moulik, S.P.: Absorption and emission spectroscopic studies of fluorescence dye in alkanol, micellar and microemulsion medium. J. Photochem. Photobiol. A 123, 121–128 (1999)CrossRefGoogle Scholar
  3. Breitzer, J.G., Dlott, D.D., Iwaki, L.K., Kirkpatrick, S.M., Rauchfuss, T.B.: Third-order nonlinear optical properties of sulfur-rich compounds. J. Phys. Chem. A 103, 6930–6937 (1999)CrossRefGoogle Scholar
  4. Corbeil, E.M., Riter, R.E., Levinger, N.E.: Cosurfactant impact on probe molecule in reverse micelles. J. Phys. Chem. B 108, 10777–10784 (2004)CrossRefGoogle Scholar
  5. Deshpandek, R., Rao, K.D., Nampoothirik, A.V.V.N., Kandasamy, K., Nayar, B.K., Singh, B.P.: Z-scan studies in fluorescein-doped boric acid glass. Opt. Quant. Electron. 29, 567–578 (1997)CrossRefGoogle Scholar
  6. El Kouari, Y., Migalska-Zalas, Y., Arof, A., Sahraoui, A.K.: Computations of absorption spectra and nonlinear optical properties of molecules based on anthocyanidin structure. Opt. Quant. Electron. 47(5), 1091–1099 (2015)CrossRefGoogle Scholar
  7. Farajollahi, F., Marti, O., Amirkhani, M.: Stabilization of self-assembled microdroplets using short chain alcohols. J. Polym. Sci. B Polym. Phys. 53(10), 709–718 (2015)ADSCrossRefGoogle Scholar
  8. Fuks-Janczarek, I., Nunzi, J.-M., Sahraoui, B., Kityk, I.V., Berdowski, J., Caminade, A.M., Majoral, J.-P., Martineau, A.C., Frere, P., Roncali, J.: Third-order nonlinear optical properties and two-photon absorption in branched oligothienylenevinylenes. Opt. Commun. 209(4–6), 461–466 (2002)ADSCrossRefGoogle Scholar
  9. Ganeev, R.A., Baba, M., Morita, M., Ryasnyansky, A.I., Suzuki, M., Kuroda, H.: Thermally induced and Kerr-induced optical nonlinearities of a pseudoisocyanine solution at 532 nm. J. Opt. A Pure Appl. Opt. 6, 1076–1081 (2004)ADSCrossRefGoogle Scholar
  10. Gisselsson, L.: The passage of fluorescein sodium to the labyrinthine fluids. Actaoto-laryngologica 37, 268–275 (1949)CrossRefGoogle Scholar
  11. Iliopoulos, O., El-Ghayoury, A., El Ouazzani, H., Pranaitis, M., Belhadj, E., Ripaud, E., Mazari, M., Sallé, M., Gindre, D., Sahraoui, B.: Nonlinear absorption reversing between an electroactive ligand and its metal complexes. Opt. Express 20(23), 25311–25316 (2012)ADSCrossRefGoogle Scholar
  12. Keerl, R., Weber, R.K., Draf, W., Wienke, A., Schaefer, S.D.: Detection of cerebrospinal fluid fistulas: an analysis of 420 administrations and reported complications in Europe and the United States. Laryngoscope 114, 266–272 (2004)CrossRefGoogle Scholar
  13. Laia, C.A.T., Costa, S.M.B.: Fluorescence quenching of a squaraine dye by water in AOT reversed micelles. J. Chem. Soc. Faraday Trans. 94, 2367–2373 (1998)CrossRefGoogle Scholar
  14. Lam, S.K., Chan, M.A., Lo, D.: Z-scan measurements of the nonlinear absorption and refractive index for fluorescein 548-doped organically modified sol–gel silica films. Opt. Mater. 18(2), 235–241 (2001)ADSCrossRefGoogle Scholar
  15. Martin, M.M., Lindqvist, L.: The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381–390 (1975)CrossRefGoogle Scholar
  16. Morita, R., Yamashita, M.: Relationship between Second- and Third-Order Nonlinear Optical Susceptibilities due to Electronic Polarization. Jpn. J. Appl. Phys. 32(7A), L905–L907 (1993)ADSCrossRefGoogle Scholar
  17. Mota, M.C., Carvalho, P., Ramalho, J., Leite, E.: Spectrophotometric analysis of sodium fluorescein aqueous solutions. Determination of molar absorption coefficient. Int. Ophthalmol. 15, 321–326 (1991)CrossRefGoogle Scholar
  18. Ortí, E., Viruela, P.M., Viruela, R., Effenberger, F., Hernandez, V., López Navarrete, J.T.: Raman and theoretical study of the solvent effects on the sizable intramolecular charge transfer in the push−pull 5-(dimethylamino)-5′-nitro-2,2′-bithiophene. J. Phys. Chem. A 109(39), 8724–8731 (2005)CrossRefGoogle Scholar
  19. Patil, S.K., Wari, M.N., Panicker, C.Y., Inamdar, S.R.: Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 123, 117–126 (2014)CrossRefGoogle Scholar
  20. Pereira, R.V., Gehlen, M.H.: Fluorescence of acridinic dyes in anionic surfactant solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 2926–2932 (2005)ADSCrossRefGoogle Scholar
  21. Rea, D.G.: Effects of solvent on Raman band intensities. J. Mol. Spectrosc. 4, 507–517 (1960)ADSCrossRefGoogle Scholar
  22. Sahraoui, B., Nguyen Phu, X., Sallé, M., Gorgues, A.: Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N′-dimethylaniline tetrathiafulvalene derivatives. Opt. Lett. 23(23), 1811–1813 (1998)ADSCrossRefGoogle Scholar
  23. Sasabe, H.: Challenge to novel organic nonlinear optical materials for photonics application. Supramol. Sci. 3(1–3), 91–101 (1996)CrossRefGoogle Scholar
  24. Sharifi, S.: Relationship between relaxation processes of light scattering in network of droplets. Opt. Spectrosc. 118(2), 317–323 (2015)ADSCrossRefGoogle Scholar
  25. Sharifi, S., Doodman, E.: Network of nano-droplets by a tri-block polymer. Opt. Spectrosc. 117(5), 807–813 (2014)ADSCrossRefGoogle Scholar
  26. Sharifi, S., Alizadeh, K., Shavakandi, S.M.: Comments on “Photophysics of Rhodamine B in the nanosized water droplets: a concentration dependence study”. J. Mol. Liq. (2016). doi: 10.1016/j.molliq.2016.11.057
  27. Sharifi, S., Kudla, P., Oliveira, C.L., Pedersen, J.S., Bergenholtz, J.: Variations in structure explain the viscometric behavior of AOT microemulsions at low water/AOT molar ratios. Z. Phys. Chem. 226, 201–218 (2012)CrossRefGoogle Scholar
  28. Sheik-Bahae, M., Said, A.A., van Stryland, E.W.: High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989)ADSCrossRefGoogle Scholar
  29. Singer, K.D., Sohn, J.E., King, L.A., Gordon, H.M.: Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds. J. Opt. Soc. Am. B 6(7), 1339–1350 (1989)CrossRefGoogle Scholar
  30. Sjoback, R., Nygren, J., Kubista, M.: Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A 51, L7–L21 (1995)ADSCrossRefGoogle Scholar
  31. Vasiliu, I.C., Constantinescu, C., Voicescu, M., Emandi, A.: Solvent effects on the absorption and fluorescence spectra of Er(iii) (azo-dyes and schiff bases) complexes: determination of ground and excited state dipole moment. Dig. J. Nanomater Bios. 6(2), 603–608 (2011)Google Scholar
  32. Vodolazkaya, N.A., Kleshchevnikova, Y.A., Mchedlov-Petrossyan, Nikolay O.: Differentiating impact of the AOT-stabilized droplets of water-in-octane microemulsions as examined using halogenated fluoresceins as molecular probes. J. Mol. Liq. 187, 381–388 (2013)CrossRefGoogle Scholar
  33. Watanabe, H., Oki, Y., Maeda, M., Omatsu, T.: Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer. Appl. Phys. Lett. 86(15) (2005). doi: 10.1063/1.1904717 Google Scholar
  34. Zanker, V., Peter, W.: Die prototropen formen des fluoresceins. Chem. Ber. 91, 572–580 (1958)CrossRefGoogle Scholar
  35. Ziółek, Ł., Sworakowski, J., Palewska, K., Lipiński, J., Nešpůrek, S.: Dipole moments and second-order hyperpolarizabilities of imidazole-based betaines determined from the solvatochromic effect. Mol. Cryst. Liq. Cryst. 283(1), 125–130 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations