Skip to main content
Log in

Numerically analyzed spectral and temporal management of all-optical switching based on chalcogenide bistable fiber Bragg gratings

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

All-optical switching in nonlinear chalcogenide fiber Bragg gratings (FBG) can be achieved thanks to the third-order nonlinear optical parameters of chalcogenide glasses. Spectral and temporal characteristics of these gratings are shown. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. This paper is devoted to the comparison of SPM and XPM switching simulated using the time-domain transfer matrix method. Further we present the results of numerical investigation of the effect of modulation instability formed in nonlinear FBGs. The modulation instability occurs if the grating response time is lower than the transit time of the pulse through the grating. Possibilities of the successful elimination of the output pulse degradation via the modulation instability under different conditions implemented into numerical experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas, S., Mustecaplıglu, O.E.: Optical bistability in one-dimensional doped photonic crystals with spontaneously generated coherence. Phys. Rev. A 88, 053846 (2013)

    Article  ADS  Google Scholar 

  • Ahmad, R., Rochette, M.: All-chalcogenide raman-parametric laser, wavelength converter, and amplifier in a single microwire. IEEE J. Sel. Topics Quantum Electron. 20(5), 299–304 (2014)

    Article  Google Scholar 

  • Broderick, N.G.R.: Bistable switching in nonlinear Bragg gratings. Opt. Commun. 148(1–3), 90–941 (1998)

    Article  ADS  Google Scholar 

  • Eggleton, B.J., Sterke, C.M.: Nonlinear pulse propagation in Bragg Gratings. J. Opt. Soc. Am. B 14(11), 2980–2993 (1997)

    Article  ADS  Google Scholar 

  • Eggleton, B.J., Sterke, C.M.: Bragg grating solitons. Phys. Rev. Lett. 76(10), 1627–1630 (1996)

    Article  ADS  Google Scholar 

  • Eggleton, B.J., Ta’eed, V.G., Luther-Davies, B.: Chalcogenide glass advanced for all-optical processing. Photonics Spectra 41(9), 88–95 (2007)

    Google Scholar 

  • Gan, X., Wang, Y., Zhang, F., Zhao, Ch., Jiang, B., Fang, L., Li, D., Wu, H., Ren, Z., Zhao, J.: Graphene-controlled fiber Bragg grating and enabled optical bistability. Opt. Lett. 41, 603–606 (2016)

    Article  ADS  Google Scholar 

  • Cherukulappurath, S., Guignard, M., Marchand, C., Smektala, F., Boudebs, G.: Linear and nonlinear optical characterization of tellurium based chalcogenide glasses. Opt. Commun. 242(1–3), 313–319 (2004)

    Article  ADS  Google Scholar 

  • Kabakova, I.V., Grobnic, D., Mihailov, S., Mägi, E.C., Sterke, C.M., Eggleton, B.J.: Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity. Opt. Express 19, 5868–5873 (2011)

    Article  ADS  Google Scholar 

  • Kabakova I.V., Sterke C.M., Eggleton B. J: Picoseconds all-optical switch and pulse re-shaper based in a bistable Bragg grating cavity. In: SPIE, vol. 7728, p 77280R. Nonlinear Optics and Applications IV (2010)

  • Kabakova, I.V., Corcoran, B., Bolger, J.A., Sterke, C.M., Eggleton, B.J.: All-optical self-switching in optimized phase-shifted fiber Bragg grating. Opt. Express 17, 5083–5088 (2009)

    Article  ADS  Google Scholar 

  • Kim, B.S., Chung, Ch., Lee, J.S.: An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes. IEEE J. Quantum Electron. 36(7), 787–794 (2000)

    Article  ADS  Google Scholar 

  • Lee, H., Agrawal, G.P.: Nonlinear switching of optical pulses in fiber Bragg gratings. IEEE J. Quantum Electron. 39(3), 508–515 (2003)

    Article  ADS  Google Scholar 

  • Melloni, A., Chinello, M., Martinelli, M.: All-optical switching in phase- shifted fiber Bragg grating. IEEE Photon. Technol. Lett. 12, 42–44 (2000)

    Article  ADS  Google Scholar 

  • Mescia, L., Smektala, F., Prudenzano, F.: New trends in amplifiers and sources via chalcogenide photonic crystal fibers. Int. J. Opt. 2012, 1–8 (2012)

    Article  Google Scholar 

  • Nguyen, H.C., Finsterbusch, K., Moss, D.J., Eggleton, B.J.: Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre. Electron. lett. 42(10), 1–2 (2006)

    Article  Google Scholar 

  • Nguyen, H.C., Yeom, D.I., Mägi, E.C., Kuhlmey, B.T., Sterke, C.M., Eggleton, B.J.: Nonlinear switching using long period gratings in chalcogenide fiber. JOSA B 25, 1393–1401 (2008)

    Article  ADS  Google Scholar 

  • Sterke, C.M.: Optical push broom. Opt. Lett. 17, 914–916 (1992)

    Article  ADS  Google Scholar 

  • Saremi, M.S., Ta’eed, V.G., Baker, N.J., Littler, I.C.M., Moss, D.J., Eggleton, B.J., Ruan, Y., Davies, B.L.: High performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J. Opt. Soc. Am. B 23(7), 1323–1331 (2006)

    Article  ADS  Google Scholar 

  • Ta’eed, V.G., Lamont, M.R.E., Moss, D.J., Eggleton, B.J., Choi, D.Y., Madden, S., Luther-Davies, B.: All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides. Opt. Express 14, 11242–11247 (2006)

    Article  ADS  Google Scholar 

  • Toroker, Z., Horowitz, M.: Optimized split-step method for modelling nonlinear pulse propagating in fiber Bragg gratings. J. Opt. Soc. Am. B 25(3), 448–457 (2008)

    Article  ADS  Google Scholar 

  • Yosia, Y., Shum, P.: Optical bistability in periodic media with third-, fifth-, and seventh-order nonlinearities. J. Lightwave Technol. 25(3), 875–882 (2007)

    Article  ADS  Google Scholar 

  • Zakery, A., Elliott, S.R.: Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin (2007)

    Google Scholar 

  • Zang, Z., Zhang, Y.: Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl. Opt. 51, 3424–3430 (2012)

    Article  ADS  Google Scholar 

  • Zeng, F., Yao, J.: All-optical microwave filters using uniform fiber Bragg gratings with identical reflectivities. J. Lightwave Technol. 23(3), 1410–1418 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Slovak Research and Development Agency under the project APVV-0025-12 and by the R&D operational programme Centre of Excellence of Power Electronics Systems and Materials for their Components No. OPVaV-2008/2.1/01-SORO, ITMS 2622012003 funded by European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Scholtz.

Additional information

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling 2016.

Guest edited by Krzysztof Anders, Xuesong Meng, Gregory Morozov, Sendy Phang, and Mariusz Zdanowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholtz, Ľ., Ladányi, L. & Müllerová, J. Numerically analyzed spectral and temporal management of all-optical switching based on chalcogenide bistable fiber Bragg gratings. Opt Quant Electron 49, 48 (2017). https://doi.org/10.1007/s11082-016-0878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0878-2

Keywords

Navigation