Efficient generation of a continuous-wave, tunable 780 nm laser via an optimized cavity-enhanced frequency doubling of 1.56 µm at low pump powers



We present the strict design parameters of the experiment for the 780 nm tunable continuous-wave second harmonic (SH) generation by the nonlinear resonator containing a MgO doped periodically poled LiNbO3 (MgO:PPLN) crystal. Optimization of such critical parameters, including focusing and impedance matching, more than 84% SH conversion efficiency and 3.1 W available output power at 780 nm were obtained from the fundamental wave at 1560 nm with two different input couplers. The thermal saturated behavior of the SH output power has been observed in the experiment. The beam quality factor M2 of the generated SH wave is 1.04 (1.03), and the RMS power stability is 1.29% in 3 h. The SH wave was further used to detect the D 2 transitions of Rb atom, exhibiting a fine tunable characteristic. Such laser source can be a suitable candidate in the atomic physics and quantum optics.


Second harmonic generation 780 nm laser Cavity-enhanced configuration Rubidium atoms MOPA 



This work is supported by the Doctoral Science Foundation of Taiyuan University of Science and Technology [Grant No. 20162002], the Special Foundation for Theoretical Physics Research Program of China [Grant No. 11647035] and the National Major Scientific Research Program of China [Grant No. 2012CB921601].


  1. Ast, S., Nia, R.M., Schönbeck, A., Lastzka, N., Steinlechner, J., Eberle, T., Mehmet, M., Steinlechner, S., Schnabel, R.: High-efficiency frequency doubling of continuous-wave laser light. Opt. Lett. 36, 3467–3469 (2011)ADSCrossRefGoogle Scholar
  2. Baumann, E., Giorgetta, F.R., Coddington, I., Sinclair, L.C., Knabe, K., Swann, W.C., Newbury, N.R.: Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. Opt. Lett. 38, 2026–2028 (2013)ADSCrossRefGoogle Scholar
  3. Boyd, G.D., Kleinman, D.A.: Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 39, 3579–3639 (1968)CrossRefGoogle Scholar
  4. Chanelière, T., Matsukevich, D.N., Jenkins, S.D., Kennedy, T.A., Chapman, M.S., Kuzmich, A.: Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett. 96, 093604 (2006)ADSCrossRefGoogle Scholar
  5. Chiow, S.W., Kovachy, T., Hogan, J.M., Kasevich, M.A.: Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals. Opt. Lett. 37, 3861–3863 (2012)ADSCrossRefGoogle Scholar
  6. Deng, X., Zhang, J., Zhang, Y.C., Li, G., Zhang, T.C.: Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4. Opt. Express 21, 25907–25911 (2013)ADSCrossRefGoogle Scholar
  7. Dingjan, J., Darquié, B., Beugnon, J., Jones, M.P.A., Bergamini, S., Messin, G., Browaeys, A., Grangier, P.: A frequency-doubled laser system producing ns pulses for rubidium manipulation. Appl. Phys. B 82, 47–51 (2006)ADSCrossRefGoogle Scholar
  8. Eismann, U., Bergschneider, A., Sievers, F., Kretzschmar, N., Salomon, C., Chevy, F.: 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium. Opt. Express 21, 9091–9102 (2013)ADSCrossRefGoogle Scholar
  9. Feng, J.X., Li, Y.M., Liu, Q., Liu, J.L., Zhang, K.S.: High-efficiency generation of a continuous-wave single-frequency 780 nm laser by external-cavity frequency doubling. Appl. Opt. 46, 3593–3596 (2007)ADSCrossRefGoogle Scholar
  10. Feng, J.X., Tian, X.T., Li, Y.M., Zhang, K.S.: Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3. Appl. Phys. Lett. 92, 221102 (2008)ADSCrossRefGoogle Scholar
  11. Gayer, O., Sacks, Z., Galun, E., Arie, A.: Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 91, 343–348 (2008)ADSCrossRefGoogle Scholar
  12. Ge, Y.L., Guo, S.L., Han, Y.S., Wang, J.M.: Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser. Opt. Commun. 334, 74–78 (2015)ADSCrossRefGoogle Scholar
  13. Guo, S.L., Ge, Y.L., Han, Y.S., He, J., Wang, J.M.: Investigation of optical inhomogeneity of MgO:PPLN crystals for frequency doubling of 1560 nm laser. Opt. Commun. 326, 114–120 (2014)ADSCrossRefGoogle Scholar
  14. Guo, S.L., Ge, Y.L., He, J., Wang, J.M.: Singly resonant sum-frequency generation of 520-nm laser via a variable input-coupling transmission cavity. J. Mod. Opt. 62, 1583–1590 (2015)ADSCrossRefGoogle Scholar
  15. Guo, S.L., Wang, J.M., Han, Y.S., He, J.: Frequency doubling of cw 1560 nm laser with single-pass, doubling-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line. Proc. SPIE 8772, 87721B (2013)ADSCrossRefGoogle Scholar
  16. Guo, X., Zhao, J., Li, Y.: Robust generation of bright two-color entangled optical beams from a phase-insensitive optical parametric amplifier. Appl. Phys. Lett. 100, 091112 (2012)ADSCrossRefGoogle Scholar
  17. Han, Y.S., Wen, X., Bai, J.D., Yang, B.D., Wang, Y.H., He, J., Wang, J.M.: Generation of 130 mW of 397.5 nm tunable laser via ring-cavity enhanced frequency doubling. J. Opt. Soc. Am. B 31, 1942–1947 (2014)ADSCrossRefGoogle Scholar
  18. Hayasaka, K., Zhang, Y., Kasai, K.: Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser. Opt. Express 12, 3567–3572 (2004)ADSCrossRefGoogle Scholar
  19. Henderson, A., Esquinasi, P., Levin, M.: 6.3 Watt single frequency CW source at 780 nm based on frequency conversion of a fiber laser. Proc. SPIE 7582, 75820F (2010)ADSCrossRefGoogle Scholar
  20. Hétet, G., Hosseini, M., Sparkes, B.M., Oblak, D., Lam, P.K., Buchler, B.C.: Photon echoes generated by reversing magnetic field gradients in a rubidium vapor. Opt. Lett. 33, 2323–2325 (2008)ADSCrossRefGoogle Scholar
  21. Hou, F., Xiang, X., Quan, R., Wang, M., Zhai, Y., Wang, S., Liu, T., Zhang, S., Dong, R.: An efficient source of frequency anti-correlated entanglement at telecom wavelength. Appl. Phys. B 122, 1–8 (2016)ADSCrossRefGoogle Scholar
  22. Jensen, O.B., Petersen, P.M.: Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity. Opt. Express 21, 6076–6081 (2013)ADSCrossRefGoogle Scholar
  23. Kaneda, Y., Kubota, S.: Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator. Appl. Opt. 36, 7766–7775 (1997)ADSCrossRefGoogle Scholar
  24. Khripunov, S., Kobtsev, S., Radnatarov, D.: Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation. Appl. Opt. 55, 502–506 (2016)ADSCrossRefGoogle Scholar
  25. Khripunov, S., Radnatarov, D., Kobtsev, S., Skorkin, A.: Variable-wavelength second harmonic generation of CW Yb-fibre laser in partially coupled enhancement cavity. Opt. Express 22, 7046–7051 (2014)ADSCrossRefGoogle Scholar
  26. Kobayashi, T., Akamatsu, D., Nishida, Y., Tanabe, T., Yasuda, M., Hong, F.L., Hosaka, K.: Second harmonic generation at 399 nm resonant on the 1S0 − 1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide. Opt. Express 24, 12142–12150 (2016)ADSCrossRefGoogle Scholar
  27. Kumar, S.C., Samanta, G.K., Ebrahim-Zadeh, M.: High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO: sPPLT. Opt. Express 17, 13711–13726 (2009)ADSCrossRefGoogle Scholar
  28. Li, T., Mitazaki, R., Kasai, K., Okada-Shudo, Y., Watanabe, M., Zhang, Y.: Generation of tripartite quantum correlation among amplitude-squeezed beams by frequency doubling in a singly resonant cavity. Phys. Rev. A 91, 023833 (2015)ADSCrossRefGoogle Scholar
  29. Mimoun, E., Sarlo, L.D., Zondy, J.J., Dalibard, J., Gerbier, F.: Solid-state laser system for laser cooling of sodium. Appl. Phys. B 99, 31–40 (2010)ADSCrossRefGoogle Scholar
  30. Ou, Z.Y., Pereira, S.E., Polzik, E.S., Kimble, H.J.: 85% efficiency for cw frequency doubling from 1.08 to 0.54 um. Opt. Lett. 17, 640–642 (1992)ADSCrossRefGoogle Scholar
  31. Paschotta, R., Kürz, P., Henking, R., Schiller, S., Mlynek, J.: 82% efficient continuous-wave frequency doubling of 1.06 µm with a monolithic MgO:LiNbO3 resonator. Opt. Lett. 19, 1325–1327 (1994)ADSCrossRefGoogle Scholar
  32. Samanta, G.K., Kumar, S.C., Devi, K., Ebrahim-Zadeh, M.: Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency. Opt. Lett. 35, 3513–3515 (2010)ADSCrossRefGoogle Scholar
  33. Sané, S.S., Bennetts, S., Debs, J.E., Kuhn, C.C.N., McDonald, G.D., Altin, P.A., Close, J.D., Robins, N.P.: 11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium. Opt. Express 20, 8915–8919 (2012)ADSCrossRefGoogle Scholar
  34. Sparkes, B.M., Bernu, J., Hosseini, M., Geng, J., Glorieux, Q., Altin, P.A., Lam, P.K., Robins, N.P., Buchler, B.C.: An ultra-high optical depth cold atomic ensemble for quantum memories. J. Phys: Conf. Ser. 467, 12009–12013 (2013)Google Scholar
  35. Targat, R.L., Zondy, J.J., Lemonde, P.: 75%-Efficiency blue generation from an intracavity PPKTP frequency doubler. Opt. Commun. 247, 471–481 (2005)ADSCrossRefGoogle Scholar
  36. Thompson, R.J., Tu, M., Aveline, D.C., Lundblad, N., Maleki, L.: High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals. Opt. Express 11, 1709–1713 (2003)ADSCrossRefGoogle Scholar
  37. Truong, G.W., Douglass, K.O., Maxwell, S.E., Zee, R.D., Plusquellic, D.F., Hodges, J.T., Long, D.A.: Frequency-agile, rapid scanning spectroscopy. Nat. Photon. 7, 532–534 (2013)ADSCrossRefGoogle Scholar
  38. Villa, F., Chiummo, A., Giacobino, E., Bramati, A.: High-efficiency blue-light generation with a ring cavity with periodically poled KTP. J. Opt. Soc. Am. B 24, 576–580 (2007)ADSCrossRefGoogle Scholar
  39. Wang, J.M., Zhang, K., Ge, Y.L., Guo, S.L.: Efficient frequency doubler of 1560 nm laser based on a semi-monolithic resonant cavity with a PPKTP crystal. Opt. Commun. 369, 194–198 (2016)ADSCrossRefGoogle Scholar
  40. Wen, X., Han, Y.S., Bai, J.D., He, J., Wang, Y.H., Yang, B.D., Wang, J.M.: Cavity-enhanced frequency doubling from 795 nm to 397.5 nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime. Opt. Express 22, 32293–32300 (2014)ADSCrossRefGoogle Scholar
  41. Yang, C.S., Xu, S.H., Mo, S.P., Li, C., Feng, Z.M., Chen, D.D., Yang, Z.M., Jiang, Z.H.: 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm. Opt. Express 21, 12546–12551 (2013)ADSCrossRefGoogle Scholar
  42. Zeil, P., Zukauskas, A., Tjörnhammar, S., Canalias, C., Pasiskevicius, V., Laurell, F.: High-power continuous-wave frequency-doubling in KTiOAsO4. Opt. Express 21, 30453–30459 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, College of Applied ScienceTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China
  2. 2.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-ElectronicsShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations