Skip to main content
Log in

Realisation of a humidity sensor based on perfect metamaterial absorber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed and investigated a humidity sensor based on perfect metamaterial absorber. The sensor is composed of three layers, which are metallic particle array on the top, porous silicon in the middle layer and metallic film at the bottom. According to the effective medium approximation, the effective permittivity of porous silicon is mainly determined by the filling fraction of water condensation. It is shown that the resonant wavelength displays significant red-shift with the increasing effective permittivity of porous silicon. Furthermore, the simulation results indicate that the refractive index sensitivity of absorber is high to 249 nm/RIU, which makes our structure be an ideal candidate for evaluating the humidity of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Fang, A., Koschny, T., Soukoulis, C.M.: Self-consistent calculations of loss-compensated fishnet metamaterials. Phys. Rev. B 82, 121102 (2010)

    Article  ADS  Google Scholar 

  • Guo, N., Hu, W.D., Chen, X.S., Wang, L., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)

    Article  ADS  Google Scholar 

  • Hendrickson, J., Guo, J.P., Zhang, B.Y., Buchwald, W., Soref, R.: Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 37(3), 371–373 (2012)

    Article  ADS  Google Scholar 

  • Kim, H.S., Kumar, M.D., Kim, H., Kim, J.: Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires. Infrared Phys. Technol. 76, 621–625 (2016)

  • Lalanne, P., Lemercier-lalanne, D.: On the effective medium theory of subwavelength periodic structures. J Mod Optic 43(10), 2063–2085 (1996)

    Article  ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010a)

    Article  ADS  Google Scholar 

  • Liu, X.L., Starr, T., Starr, A.F., Padilla, W.J.: Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010b)

    Article  ADS  Google Scholar 

  • Liu, X.L., Tyler, T., Starr, T., Starr, A.F., Jokerst, N.M., Padilla, W.J.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)

    Article  ADS  Google Scholar 

  • Miao, J.S., Hu, W.D., Jing, Y.L., Luo, W.J., Liao, L., Pan, A., Wu, S.W., Cheng, J.X., Chen, X.S., Lu, W.: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small 11(20), 2392–2398 (2015)

    Article  Google Scholar 

  • Ni, B., Chen, X.Y., Xiong, D.Y., Liu, H., Hua, G.H., Chang, J.H., Zhang, J.H., Zhou, H.: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt. Quantum Electron. 47, 1339–1346 (2015a)

    Article  Google Scholar 

  • Ni, H.B., Wang, M., Shen, T.Y., J, M.: Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano 9(2), 1913–1925 (2015b)

    Article  Google Scholar 

  • Pendry, B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  • Qiu, W.C., Hu, W.D.: Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China Phys. Mech. Astron. 58, 027001 (2015)

    Article  Google Scholar 

  • Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  • Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  • Wang, H., Wang, L.P.: Perfect selective metamaterial solar absorbers. Opt. Express 21(s6), A1078–A1093 (2013)

    Article  ADS  Google Scholar 

  • Zhang, H.D., Muhammad, A., Luo, J., Tong, Q., Lei, Y., Zhang, X.Y., Sang, H.S., Xie, C.S.: MWIR/LWIR filter based on Liquid-Crystal Fabry-Perot structure for tunable spectral imaging detection. Infrared Phys. Technol. 69, 68–73 (2015)

    Article  ADS  Google Scholar 

  • Zhou, J., Koschny, Th, Soukoulis, C.M.: An efficient way to reduce losses of left-handed metamaterials. Opt. Express 16, 11147–11152 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China (No. 41401572), by the Startup Foundation for Introducing Talent of NUIST (S8113075001), by the Jiangsu Innovation & Entrepreneurship Group Talents Plan and by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ni.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 2016.

Guest edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, B., Wang, Z.Y., Zhao, R.S. et al. Realisation of a humidity sensor based on perfect metamaterial absorber. Opt Quant Electron 49, 33 (2017). https://doi.org/10.1007/s11082-016-0858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0858-6

Keywords

Navigation