Advertisement

Realisation of a humidity sensor based on perfect metamaterial absorber

  • B. Ni
  • Z. Y. Wang
  • R. S. Zhao
  • X. Y. Ma
  • Z. Q. Xing
  • L. S. Yang
  • L. J. Huang
  • Y. Y. Lin
  • D. B. Zhang
Article
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016

Abstract

In this paper, we have proposed and investigated a humidity sensor based on perfect metamaterial absorber. The sensor is composed of three layers, which are metallic particle array on the top, porous silicon in the middle layer and metallic film at the bottom. According to the effective medium approximation, the effective permittivity of porous silicon is mainly determined by the filling fraction of water condensation. It is shown that the resonant wavelength displays significant red-shift with the increasing effective permittivity of porous silicon. Furthermore, the simulation results indicate that the refractive index sensitivity of absorber is high to 249 nm/RIU, which makes our structure be an ideal candidate for evaluating the humidity of environment.

Keywords

Humidity sensor Perfect metamaterial absorber Numerical simulation 

Notes

Acknowledgements

This work was supported in part by the Natural Science Foundation of China (No. 41401572), by the Startup Foundation for Introducing Talent of NUIST (S8113075001), by the Jiangsu Innovation & Entrepreneurship Group Talents Plan and by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. Fang, A., Koschny, T., Soukoulis, C.M.: Self-consistent calculations of loss-compensated fishnet metamaterials. Phys. Rev. B 82, 121102 (2010)ADSCrossRefGoogle Scholar
  2. Guo, N., Hu, W.D., Chen, X.S., Wang, L., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)ADSCrossRefGoogle Scholar
  3. Hendrickson, J., Guo, J.P., Zhang, B.Y., Buchwald, W., Soref, R.: Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 37(3), 371–373 (2012)ADSCrossRefGoogle Scholar
  4. Kim, H.S., Kumar, M.D., Kim, H., Kim, J.: Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires. Infrared Phys. Technol. 76, 621–625 (2016)Google Scholar
  5. Lalanne, P., Lemercier-lalanne, D.: On the effective medium theory of subwavelength periodic structures. J Mod Optic 43(10), 2063–2085 (1996)ADSCrossRefGoogle Scholar
  6. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  7. Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010a)ADSCrossRefGoogle Scholar
  8. Liu, X.L., Starr, T., Starr, A.F., Padilla, W.J.: Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010b)ADSCrossRefGoogle Scholar
  9. Liu, X.L., Tyler, T., Starr, T., Starr, A.F., Jokerst, N.M., Padilla, W.J.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)ADSCrossRefGoogle Scholar
  10. Miao, J.S., Hu, W.D., Jing, Y.L., Luo, W.J., Liao, L., Pan, A., Wu, S.W., Cheng, J.X., Chen, X.S., Lu, W.: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small 11(20), 2392–2398 (2015)CrossRefGoogle Scholar
  11. Ni, B., Chen, X.Y., Xiong, D.Y., Liu, H., Hua, G.H., Chang, J.H., Zhang, J.H., Zhou, H.: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt. Quantum Electron. 47, 1339–1346 (2015a)CrossRefGoogle Scholar
  12. Ni, H.B., Wang, M., Shen, T.Y., J, M.: Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano 9(2), 1913–1925 (2015b)CrossRefGoogle Scholar
  13. Pendry, B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)ADSCrossRefGoogle Scholar
  14. Qiu, W.C., Hu, W.D.: Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China Phys. Mech. Astron. 58, 027001 (2015)CrossRefGoogle Scholar
  15. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)ADSCrossRefGoogle Scholar
  16. Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)ADSCrossRefGoogle Scholar
  17. Wang, H., Wang, L.P.: Perfect selective metamaterial solar absorbers. Opt. Express 21(s6), A1078–A1093 (2013)ADSCrossRefGoogle Scholar
  18. Zhang, H.D., Muhammad, A., Luo, J., Tong, Q., Lei, Y., Zhang, X.Y., Sang, H.S., Xie, C.S.: MWIR/LWIR filter based on Liquid-Crystal Fabry-Perot structure for tunable spectral imaging detection. Infrared Phys. Technol. 69, 68–73 (2015)ADSCrossRefGoogle Scholar
  19. Zhou, J., Koschny, Th, Soukoulis, C.M.: An efficient way to reduce losses of left-handed metamaterials. Opt. Express 16, 11147–11152 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • B. Ni
    • 1
  • Z. Y. Wang
    • 1
  • R. S. Zhao
    • 1
  • X. Y. Ma
    • 1
  • Z. Q. Xing
    • 1
  • L. S. Yang
    • 1
  • L. J. Huang
    • 2
  • Y. Y. Lin
    • 3
  • D. B. Zhang
    • 4
  1. 1.Jiangsu Key Laboratory of Meteorological Observation and Information ProcessingNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Material Science and EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.College of Photonic and Electronic EngineeringFujian Normal UniversityFuzhouChina
  4. 4.Department of PhysicsChangshu Institute of TechnologyChangshuChina

Personalised recommendations