Solitary wave solutions of the Schäfer–Wayne short-pulse equation using two reliable methods

  • Ghazala Akram
  • Fiza Batool


The Schäfer–Wayne short-pulse equation, which governs the propagation of ultra-short light pulses in silica optical fibres is analytically investigated. The sine–cosine method and solitary wave ansatz method are used for a reliable treatment of short-pulse equation. It should be noted that the study of this model admitting soliton-type solutions is very useful for future research work.


Short-pulse equation Soliton solutions Sine–cosine ansatz method Solitary wave ansatz method Bright and dark soliton solutions 


  1. Biswas, A.: 1-Soliton solution of the K(m, n) equation with generalized evolution and time-dependent damping and dispersion. Comput. Math. Appl. 59, 2536–2540 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. Brunelli, J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. Brunelli, J.C.: The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A 353, 475–478 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. Feng, B.F., Maruno, K.I., Ohta, Y.: Integrable discretizations of the short pulse equation. J. Phys. A Math. Theor. 43, 085203 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoullis equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. Sakovich, A., Sakovich, S.: Solitary wave solutions of the short pulse equation. J. Phys. A Math. Gen. 39, L361 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. Saleem, U., Hassan, M.: Darboux transformation and multisoliton solutions of the short pulse equation. J. Phys. Soc. Jpn. 81, 094008 (2012)ADSCrossRefGoogle Scholar
  8. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D Nonlinear Phenom. 196, 90–105 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. Triki, H., Benlalli, A., Wazwaz, A.M.: Exact solutions of the generalized pochhammer-chree equation with sixth-order dispersion. Rom. J. Phys. 60, 935–951 (2015)Google Scholar
  10. Triki, H., Wazwaz, A.M.: Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients. Phys. Lett. A 373, 2162–2165 (2009)ADSCrossRefMATHGoogle Scholar
  11. Wazwaz, A.M.: The tanh method and a variable separated ODE method for solving double sine-Gordon equation. Phys. Lett. A 350, 367–370 (2006a)ADSCrossRefMATHGoogle Scholar
  12. Wazwaz, A.M.: Travelling wave solutions for the MKdV-sine-Gordon and the MKdV-sinh-Gordon equations by using a variable separated ODE method. Appl. Math. Comput. 181, 1713–1719 (2006b)MathSciNetMATHGoogle Scholar
  13. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)MathSciNetCrossRefGoogle Scholar
  14. Xie, X.Y., Tian, B., Sun, Y., Liu, L., Jiang, Y.: Bright solitons for the coupled cubic-quintic non-linear Schrodinger equations. Opt. Quantum Electron. 48, 491 (2016)CrossRefGoogle Scholar
  15. Zhang, H.: New application of the \((\frac{G^{\prime }}{G})\)-expansion method. Commun. Nonlinear. Sci. 14, 3220–3225 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations