Interaction dynamics of bright solitons in linearly coupled asymmetric systems

  • A. Govindaraji
  • A. Mahalingam
  • A. Uthayakumar


We present an extensive numerical investigation on the interaction dynamics of optical bright solitons in asymmetric nonlinear directional couplers taking into account the effects of group velocity mismatch, phase-velocity mismatch and differences in group velocity dispersions and effective mode areas between two cores. We also numerically explore the stability of bright solitons in the presence of harmonic infinitesimal perturbation, which is seeded in the form of uniform white noise. To have a comprehensive picture, we finally emphasize the influence of every individual asymmetric parameters on the soliton interaction in asymmetric nonlinear directional couplers.


Interaction dynamics Asymmetric nonlinear directional couplers Bright solitons Coupled mode theory 



One of us (AG) is indebted to Professor M. Lakshmanan for his fruitful discussions and valuable suggestions.


  1. Agrawal, G.: Applications of Nonlinear Fiber Optics. Academic Press, London (2001)Google Scholar
  2. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, London (2007)MATHGoogle Scholar
  3. Atai, J., Malomed, B.A., Merhasin, I.M.: Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun. 265(1), 342–348 (2006)ADSCrossRefGoogle Scholar
  4. Atai, J., Malomed, B.A.: Stability and interactions of solitons in two-component active systems. Phys. Rev. E 54, 4371–4374 (1996)ADSCrossRefGoogle Scholar
  5. Atai, J., Malomed, B.A.: Stability and interactions of solitons in asymmetric dual-core optical waveguides. Opt. Commun. 221(3), 55–62 (2003)ADSCrossRefGoogle Scholar
  6. Biswas, A.: Soliton–soliton interaction in optical fibers. J. Nonlinear Opt. Phys. Mater. 8(04), 483–495 (1999)ADSCrossRefGoogle Scholar
  7. Blow, K.J., Doran, N.J.: Bandwidth limits of nonlinear (soliton) optical communication systems. Electron. Lett. 19(11), 429–430 (1983)CrossRefGoogle Scholar
  8. Chu, P.L., Desem, C.: Gaussian pulse propagation in nonlinear optical fibre. Electron. Lett. 19(23), 956–957 (1983)ADSCrossRefGoogle Scholar
  9. Chu, P.L., Desem, C.: Effect of third-order dispersion of optical fibre on soliton interaction. Electron. Lett. 21(6), 228–229 (1985)CrossRefGoogle Scholar
  10. Cohen, G.: Soliton interaction and stability in nonlinear directional fiber couplers. Phys. Rev. E 52(5), 5565–5573 (1995)ADSCrossRefGoogle Scholar
  11. Cuevas-Maraver, J., Kevrekidis, P., Williams, F.: The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Springer, New York (2014)CrossRefMATHGoogle Scholar
  12. Gordon, J.P.: Interaction forces among solitons in optical fibers. Opt. Lett. 8(11), 596–598 (1983)ADSCrossRefGoogle Scholar
  13. Govindaraji, A., Mahalingam, A., Uthayakumar, A.: Dark soliton switching in nonlinear fiber couplers with gain. Opt. Laser Technol. 60, 18–21 (2014)ADSCrossRefGoogle Scholar
  14. Govindaraji, A., Mahalingam, A., Uthayakumar, A.: Numerical investigation of dark soliton switching in asymmetric nonlinear fiber couplers. Appl. Phys. B 120(2), 341–348 (2015)ADSCrossRefGoogle Scholar
  15. He, X., Xie, K., Xiang, A.: Optical solitons switching in asymmetric dual-core nonlinear fiber couplers. Optik - Int. J. Light Electron Opt. 122(14), 1222–1224 (2011)CrossRefGoogle Scholar
  16. Jensen, S.: The nonlinear coherent coupler. IEEE J. Quantum. Electron. 18(10), 1580–1583 (1982)ADSCrossRefGoogle Scholar
  17. Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear schrödinger equations. Phys. Rev. Lett. 86(22), 5043–5046 (2001)ADSCrossRefGoogle Scholar
  18. Kanna, T., Lakshmanan, M., Tchofo Dinda, P., Akhmediev, N.: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear schrödinger equations. Phys. Rev. E 73(2), 026604 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. Kaup, D.J., Malomed, B.A.: Gap solitons in asymmetric dual-core nonlinear optical fibers. J. Opt. Soc. Am. B 15(12), 2838–2846 (1998)ADSCrossRefGoogle Scholar
  20. Li, Q., Zhang, A., Hua, X.: Numerical simulation of solitons switching and propagating in asymmetric directional couplers. Opt. Commun. 285(2), 118–123 (2012)ADSCrossRefGoogle Scholar
  21. Mak, W.C.K., Malomed, B.A., Chu, P.L.: Solitons in coupled waveguides with quadratic nonlinearity. Phys. Rev. E 55(5), 6134–6140 (1997)ADSCrossRefGoogle Scholar
  22. Mitschke, F.M., Mollenauer, L.F.: Experimental observation of interaction forces between solitons in optical fibers. Opt. Lett. 12(5), 355–357 (1987)ADSCrossRefGoogle Scholar
  23. Nóbrega, K.Z., da Silva, M.G., Sombra, A.S.B.: Multistable all-optical switching behavior of the asymmetric nonlinear directional coupler. Opt. Commun. 173(16), 413–421 (2000)ADSCrossRefGoogle Scholar
  24. Radhakrishnan, R., Lakshmanan, M., Hietarinta, J.: Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E 56(2), 2213–2216 (1997)ADSCrossRefGoogle Scholar
  25. Shum, P., Liu, M.: Effects of intermodal dispersion on two-nonidentical-core coupler with different radii. Photon. Technol. Lett. IEEE 14(8), 1106–1108 (2002)ADSCrossRefGoogle Scholar
  26. Smith, K., Mollenauer, L.F.: Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction. Opt. Lett. 14(22), 1284–1286 (1989)ADSCrossRefGoogle Scholar
  27. Tsang, S.C., Chiang, K.S., Chow, K.W.: Soliton interaction in a two-core optical fiber. Opt. Commun. 229(1), 431–439 (2004)ADSCrossRefGoogle Scholar
  28. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright-dark solitons and their collisions in mixed n-coupled nonlinear schrödinger equations. Phys. Rev. A 77(1), 013820 (2008)ADSCrossRefGoogle Scholar
  29. Yang, C.C.: All-optical ultrafast logic gates that use asymmetric nonlinear directional couplers. Opt. Lett. 16(21), 1641–1643 (1991)ADSCrossRefGoogle Scholar
  30. Yang, C.-C., Wang, A.J.S.: Asymmetric nonlinear coupling and its applications to logic functions. Quantum Electron. IEEE J. 28(2), 479–487 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsPresidency CollegeChennaiIndia
  2. 2.Department of PhysicsAnna UniversityChennaiIndia

Personalised recommendations