Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures

  • Markus Kantner
  • Thomas Koprucki
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016


At cryogenic temperatures the electron–hole plasma in semiconductors becomes strongly degenerate, leading to very sharp internal layers, extreme depletion in intrinsic domains and strong nonlinear diffusion. As a result, the numerical simulation of the drift–diffusion system suffers from serious convergence issues using standard methods. We consider a one-dimensional p-i-n diode to illustrate these problems and present a simple temperature-embedding scheme to enable the numerical simulation at cryogenic temperatures. The method is suitable for forward-biased devices as they appear e.g. in optoelectronic applications. Moreover, the method can be applied to wide band gap semiconductors where similar numerical issues occur already at room temperature.


Cryogenic temperatures Drift–diffusion Transport Device simulation Wide band gap semiconductors 



This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the collaborative research center 787 Semiconductor Nanophotonics. The authors would like to thank Jürgen Fuhrmann for useful discussions and one of the reviewers for encouraging us to extend our considerations to wide band gap semiconductors.


  1. Akturk, A., Allnutt, J., Dilli, Z., Goldsman, N., Peckerar, M.: Device modeling at cryogenic temperatures: effects of incomplete ionization. IEEE Trans. Electron Device 54(11), 2984–2990 (2007)ADSCrossRefGoogle Scholar
  2. Bessemoulin-Chatard, M.: A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121, 637–670 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. Cressler, J.D., Mantooth, H.A.: Extreme Environment Electronics. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  4. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T.: Numerical methods for drift–diffusion models. WIAS Preprint 2263 (2016). In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation. Taylor and Francis, London (2017) (To appear) Google Scholar
  6. Hager, W.W.: Condition estimates. SIAM J. Sci. Stat. Comput. 5, 311–316 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. Jüngel, A.: Qualitative behaviour of solutions of a degenerate nonlinear drift–diffusion model for semiconductors. Math. Model Methods Appl. Sci. 5(4), 497–518 (1995)CrossRefMATHGoogle Scholar
  8. Koprucki, T., Rotundo, N., Farrell, P., Doan, D.H., Fuhrmann, J.: On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift–diffusion equations with diffusion enhancement. Opt. Quantum Electron. 47(6), 1327–1332 (2014)CrossRefGoogle Scholar
  9. Mott, N.F.: Metal–Insulator Transitions. Taylor and Francis, London (1974)Google Scholar
  10. Patterson, R.L., Hammoud, A., Elbuluk, M.: Assessment of electronics for cryogenic space exploration missions. Cryogenics 46, 231–236 (2006)ADSCrossRefGoogle Scholar
  11. Richey, D.M., Cressler, J.D., Jaeger, R.C.: Numerical simulation of SiGe HBT’s at cryogenic temperatures. J. Phys. IV France 04(C6), C6-127–C6-32 (1994)CrossRefGoogle Scholar
  12. Richter, H., Greiner-Bär, M., Pavlov, S.G., Semenov, A.D., Wienold, M., Schrottke, L., Giehler, M., Hey, R., Grahn, H.T., Hübers, H.-W.: A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler. Opt. Express 18(10), 10179 (2010)CrossRefGoogle Scholar
  13. Schlehahn, A., Thoma, A., Munnelly, P., Kamp, M., Höfling, S., Heindel, T., Schneider, C., Reitzenstein, S.: An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics 1, 011301 (2016)ADSCrossRefGoogle Scholar
  14. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)CrossRefGoogle Scholar
  15. Selberherr, S.: Low temperature MOS device modeling. In: Proceedings of the 172nd Meeting of the Electrochemical Society, vol. 88-9, pp. 70–86. Honolulu (1987)Google Scholar
  16. Shah, P., Mitin, V., Grupen, M., Song, G.H., Hess, K.: Numerical simulation of wide band-gap AlGaN/InGaN light-emitting diodes for output power characteristics and emission spectra. J. Appl. Phys. 79, 2755 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Weierstraß Institute (WIAS)BerlinGermany

Personalised recommendations