CuO nanoparticles synthesized by microwave-assisted method for methane sensing

  • N. M. Shaalan
  • M. Rashad
  • M. A. Abdel-Rahim


Copper oxide (CuO) of 4–12 nm has been successfully prepared using the microwave irradiation for gas sensing investigation. X-ray diffraction (XRD) confirmed the pure phase of the prepared CuO NCs. Gas sensor of these NCs was fabricated for methane sensing investigation. The measurements were carried out at various operating temperatures and gas concentrations. The response of sensor gradually increased toward the concentration range of 0–0.75% CH4, while dramatically increased at the highest concentration of 1%. The present CuO NCs could detect CH4 at levels much lower the explosive level. The gas sensing mechanism was discussed in terms of surface reaction and change in electronic structure of CuO.


Oxides Nanostructures Chemical synthesis Surface properties Gas sensing 


  1. Agfeldt, A., Gratzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)CrossRefGoogle Scholar
  2. Arbuzova, T.I., Smolyak, I.B., Naumov, S.V., Samokhvalov, A.A.: Effect of doping on the magnetic properties of the low-dimensional antiferromagnet CuO. Phys. Solid State 40, 1702–1705 (1998)ADSCrossRefGoogle Scholar
  3. Barsan, N., Weimar, U.: Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Cond. Matt. 15, 813–839 (2003)ADSCrossRefGoogle Scholar
  4. Barsan, N., Schweizer-Berberich, M., Göpel, W.: Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J. Anal. Chem. 365, 287–304 (1999)CrossRefGoogle Scholar
  5. Basu, P.K., Jana, S.K., Saha, H., Basu, S.: Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens. Actuators B 135, 81–88 (2008)CrossRefGoogle Scholar
  6. Bhattacharyy, P., Basu, P.K., Saha, H., Basu, S.: Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method. Sens. Actuators B 124, 62–67 (2007)CrossRefGoogle Scholar
  7. Chen, T.P., Chang, S.P., Hung, F.Y., Chang, S.J., Hu, Z.S.: Simple fabrication process for 2D ZnO nanowalls and their potential application as a methane sensor. J. Chen. Sens 13, 3941–3950 (2013)Google Scholar
  8. Chia-Chen, Lia, Mei-Hui, Chang: Colloidal stability of CuO nanoparticles in alkanes via oleate modifications. Mater. Lett. 58, 3903–3907 (2004)CrossRefGoogle Scholar
  9. Ghijsen, J., Tjeng, L.H., Elp, J., Eskes, H., Westerink, J., Sawatzky, G.A., Czyzyk, M.T.: Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322–11329 (1988)ADSCrossRefGoogle Scholar
  10. Haridas, D., Gupta, V.: Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens. Actuators B 166–167, 156–164 (2012)CrossRefGoogle Scholar
  11. Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)CrossRefGoogle Scholar
  12. Hu, J., Gao, F., Zhao, Z., Sang, S., Li, P., Zhang, W.: Synthesis and characterization of Cobalt-doped ZnO microstructuresfor methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)ADSCrossRefGoogle Scholar
  13. Jayatissa, A.H., Samarasekara, P., Kun, G.: Methane gas sensor application of cuprous oxide synthesized by thermal oxidation. Phys. Status Solidi A 206, 332–337 (2009)ADSCrossRefGoogle Scholar
  14. Klug, H., Alexander, L.: X-Ray Diffraction Procedures, vol. 125. Wiley, New York (1962)MATHGoogle Scholar
  15. Lee, D.D., Chung, W.Y., Sohn, B.K.: High sensitivity and selectivity methane gas sensors doped with Rh as a catalyst. Sens. Actuators B 13–14, 252–255 (1993)CrossRefGoogle Scholar
  16. Muraleedharan, K., Subramaniam, C.K., Venkataramani, N., Gundu, Rao T.K., Srivastava, C.M., Sankaranarayan, V., Srinivasan, R.: On the magnetic susceptibility of CuOx. Solid State Commun. 76, 727–730 (1990)ADSCrossRefGoogle Scholar
  17. Narsinga, Rao G., Yao, Y.D., Chen, J.W.: Superparamagnetic behavior of antiferromagnetic CuO nanoparticles. IEEE Trans. Magn 41, 3409–3411 (2005)ADSCrossRefGoogle Scholar
  18. O’keeffe, M., Stone, F.S.: The magnetic susceptibility of cupric oxide. J. Phys. Chem. Solids 23, 261–266 (1962)CrossRefGoogle Scholar
  19. Quaranta, F., Rella, R., Siciliano, P., Capone, S., Epifani, M., Vasanelli, L., Licciulli, A., Zocco, A.: A novel gas sensor based on SnO2\Os thin film for the detection of methane at low temperature. Sens. Actuators B 58, 350–355 (1999)CrossRefGoogle Scholar
  20. Rashad, M., Rüsing, M., Berth, G., Lischka, K., Pawlis, A.: CuO and Co3O4 nanoparticles: synthesis, characterizations, and raman spectroscopy. J. Nanomater. ID 714853, 1–6 (2013)CrossRefGoogle Scholar
  21. Ruhland, B., Becker, T., Muller, G.: Gas-kinetic interactions of nitrous oxides with SnO2 surfaces. Sens. Actuators B 50, 85–94 (1998)CrossRefGoogle Scholar
  22. Shaalan, N.M., Rashad, M., Moharram, A.H., Abdel-Rahim, M.A.: Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater. Sci. Semi. Proc. 46, 1–5 (2016)CrossRefGoogle Scholar
  23. Sun, X.H., Shi, Y.F., Zhang, P., Zheng, C.M., Zheng, X.Y., Zhang, F., Zhang, Y.C., Guan, N.J., Zhao, D.Y., Stucky, G.D.: Container effect in nanocasting synthesis of mesoporous metal oxides. J. Am. Chem. Soc. 133, 14542–14545 (2011)CrossRefGoogle Scholar
  24. Tu, J.C., Wang, R., Geng, W.C., Lai, X.Y., Zhang, T., Li, N., Yue, N.L., Li, X.T.: Humidity sensitive property of Li-doped 3D periodic mesoporous silica SBA-16. Sens. Actuators B 136, 392–398 (2009)CrossRefGoogle Scholar
  25. Wang, Y.G., Ren, J.W., Wang, Y.Q., Zhang, F.Y., Liu, X.H., Guo, Y., Lu, G.Z.: Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. J. Phys. Chem. C 112, 15293–15300 (2008)CrossRefGoogle Scholar
  26. Wollenstein, J., Burgmair, M., Plescher, G., Sulima, T., Hildenbr, J., Bottner, H., Eisele, I.: Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens. Actuators B 93, 442–448 (2003)CrossRefGoogle Scholar
  27. Yamazoe, N., Fuchigami, J., Kishikawa, M., Seiyama, T.: Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 86, 335–344 (1979)ADSCrossRefGoogle Scholar
  28. Zhao, J., Liu, Y.P., Li, X.W., Lu, G.Y., You, L., Liang, X.S., Liu, F.M., Zhang, T., Du, Y.: Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route. Sens. Actuators B 181, 802–809 (2013)CrossRefGoogle Scholar
  29. Zheng, X.G., Xu, C.N., Tomokiyo, Y., Tanaka, E., Yamada, H., Soejima, Y.: Picometer accuracy in measuring lattice displacements across planar faults by interferometry in coherent electron diffraction. Phys. Rev. Lett. 85, 5126–5170 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Department of Material Science and EngineeringEgypt-Japan University of Science and Technology (E-JUST)New Borg El-Arab, AlexandriaEgypt
  3. 3.Physics Department, Faculty of ScienceUniversity of TabukTabukSaudi Arabia

Personalised recommendations