Advertisement

An effective anti-oxidized strategy for ultra-narrow band absorber as plasmonic sensor

  • Yulian Li
  • Bowen An
  • Shengming Jiang
  • Jun Gao
  • Xuejia Lu
Article
  • 158 Downloads
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016

Abstract

An effective strategy to avoid the Ag oxidized problem of the ultra-narrow band grating absorbers as sensors was proposed and demonstrated theoretically by introducing a thin Al2O3 layer above the upmost Ag grating layer. We theoretically and numerically study the influence of the Al2O3 layer on the plasmoinc absorbers. The resonant wavelength of the sensor is easily tunable via geometrical scaling of the Ag grate structure and thickness of the Al2O3 layer. The introduced Al2O3 layer does not influence the underlying mechanism of the ultra-narrow absorber, so it remains the high sensitivity of the Ag-based plasmonic absorbers by keeping the sensitivity 507 nm/RIU and FOM about 160. The introduced anti-oxidized layer is an effective and harmless anti-oxidized strategy, which has great potential to improve the performance of sensors in practical applications.

Keywords

Anti-oxidized strategy Plasmonic sensor Perfect absorbers 

Notes

Acknowledgements

The authors thank Jun Yin for helpful discussion and technical supporting. This work was funded by National Natural Science Foundation of China (Nos. 61504078), China Postdoctoral Science Foundation (Nos. 2015M571545) and National Natural Science Foundation of China (Nos. 61303099).

References

  1. Ahmadian, D., Ghobadi, C., Nourinia, J.: Ultra-compact two-dimensional plasmonic nano-ring antenna array for sensing applications. Opt. Quant. Electron. 46(9), 1097–1106 (2013)CrossRefGoogle Scholar
  2. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)ADSCrossRefGoogle Scholar
  3. Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A.M., Obayya, S.S.A.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 142 (2016)CrossRefGoogle Scholar
  4. Becker, J., Trugler, A., Jakab, A., Hohenester, U., Sonnichsen, C.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2), 161–167 (2010)CrossRefGoogle Scholar
  5. Bliokh, K.Y., Bliokh, Y.P., Freilikher, V., Genack, A.Z., Hu, B., Sebbah, P.: Localized modes in open one-dimensional dissipative random systems. Phys. Rev. Lett. 97(24), 243904 (2006)ADSCrossRefGoogle Scholar
  6. Chen, X., Park, H., Pelton, M., Piao, X., Lindquist, N.C., Im, H., Kim, Y.J., Ahn, J.S., Ahn, K.J., Park, N., Kim, D., Oh, S.: Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013a)ADSGoogle Scholar
  7. Chen, Z., Wang, C., Wang, L., Jiang, C., Zhu, H.: Surface plasmonic resonance sensor by metal strip pair arrays. Opt. Quant. Electron. 45(7), 707–712 (2013b)CrossRefGoogle Scholar
  8. Ciracì, C., Chen, X., Mock, J.J., McGuire, F., Liu, X., Oh, S.-H., Smith, D.R.: Film-coupled nanoparticles by atomic layer deposition: comparison with organic spacing layers. Appl. Phys. Lett. 104(2), 023109 (2014)ADSCrossRefGoogle Scholar
  9. Fan, S., Suh, W., Joannopoulos, J.D.: “Temporal coupled-mode theory for the fano resonance in optical resonators”. J. Opt. Soc. Am. A: 20(3), 569–572 (2003)ADSCrossRefGoogle Scholar
  10. George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110(1), 111–131 (2009)CrossRefGoogle Scholar
  11. Guo, N., Hu, W., Chen, X., Wang, L., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Expr. 21(2), 1606–1614 (2013)ADSCrossRefGoogle Scholar
  12. Hao, J., Zhou, L., Qiu, M.: Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83(16), 165107 (2011)ADSCrossRefGoogle Scholar
  13. Hu, W.D., Wang, L., Chen, X.S., Guo, N., Miao, J.S., Yu, A.Q., Lu, W.: Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Opt. Quant. Electron. 45(7), 713–720 (2013)CrossRefGoogle Scholar
  14. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRefGoogle Scholar
  15. Kim, H.-S., Kumar, M.D., Kim, H., Kim, J.: Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires. Infrared Phys. Technol. 76, 621–625 (2016)ADSCrossRefGoogle Scholar
  16. Kravets, V.G., Schedin, F., Grigorenko, A.N.: Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings. Phys. Rev. B 78(20), 205405 (2008)ADSCrossRefGoogle Scholar
  17. Kurihara, K., Suzuki, K.: Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory. Anal. Chem. 47(3), 696–701 (2002)CrossRefGoogle Scholar
  18. Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photon. 1(11), 641–648 (2007)ADSCrossRefGoogle Scholar
  19. Laroche, M., Arnold, C., Marquier, F., Carminati, R., Greffet, J.J., Collin, S., Bardou, N., Pelouard, J.L.: Highly directional radiation generated by a tungsten thermal source. Opt. Lett. 30(19), 2623 (2005)ADSCrossRefGoogle Scholar
  20. Le Perchec, J., Quémerais, P., Barbara, A., López-Ríos, T.: Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100(6), 066408 (2008)ADSCrossRefGoogle Scholar
  21. Li, G., Shen, Y., Xiao, G., Jin, C.: Double-layered metal grating for high-performance refractive index sensing. Opt. Expr. 23(7), 8995–9003 (2015a)ADSCrossRefGoogle Scholar
  22. Li, Y., An, B., Jiang, S., Gao, J., Chen, Y., Pan, S.: Plasmonic induced triple-band absorber for sensor application. Opt. Expr. 23(13), 17607–17612 (2015b)ADSCrossRefGoogle Scholar
  23. Li, Z., Butun, S., Aydin, K.: Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8(8), 8242–8248 (2014)CrossRefGoogle Scholar
  24. Liao, Y.-L., Zhao, Y.: A wide-angle TE-polarization absorber based on a bilayer grating. Opt. Quant. Electron. 47(8), 2533–2539 (2015)MathSciNetCrossRefGoogle Scholar
  25. Liu, N., Langguth, L., Weiss, T., Kastel, J., Fleischhauer, M., Pfau, T., Giessen, H.: Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nat. Mater. 8(9), 758–762 (2009)ADSCrossRefGoogle Scholar
  26. Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Soennichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10(4), 1103–1107 (2010)ADSCrossRefGoogle Scholar
  27. Liu, Z., Liu, G., Huang, S., Liu, X., Wang, Y., Liu, M., Gu, G.: Enabling access to the confined optical field to achieve high-quality plasmon sensing. IEEE Photonic. Tech. L. 27(11), 1212–1215 (2015)Google Scholar
  28. Meng, L., Zhao, D., Ruan, Z., Li, Q., Yang, Y., Qiu, M.: Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt. Lett. 39(5), 1137–1140 (2014)ADSCrossRefGoogle Scholar
  29. Miao, J., Hu, W., Jing, Y., Luo, W., Liao, L., Pan, A., Wu, S., Cheng, J., Chen, X., Lu, W.: Surface plasmon‐enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 11(20), 2392–2398 (2015)CrossRefGoogle Scholar
  30. Popov, E., Maystre, D., McPhedran, R.C., Nevière, M., Hutley, M.C., Derrick, G.H.: Total absorption of unpolarized light by crossed gratings. Opt. Expr. 16(9), 6146–6155 (2008)ADSCrossRefGoogle Scholar
  31. Qiu, W., Hu, W.: Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China Phys. Mech. Astron. 58(2), 1–13 (2015)CrossRefGoogle Scholar
  32. Sharon, A., Glasberg, S., Rosenblatt, D., Friesem, A.A.: Metal-based resonant grating waveguide structures. J. Opt. Soc. Am. A: 14(3), 588–595 (1997)ADSCrossRefGoogle Scholar
  33. Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)CrossRefGoogle Scholar
  34. Tong, L., Wei, H., Zhang, S., Xu, H.: Recent advances in plasmonic sensors. Sensors 14(5), 7959–7973 (2014)CrossRefGoogle Scholar
  35. Yoon, J., Seol, K.H., Song, S.H., Magnusson, R.: Critical coupling in dissipative surface-plasmon resonators with multiple ports. Opt. Express 18(25), 25702–25711 (2010)ADSCrossRefGoogle Scholar
  36. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)ADSCrossRefGoogle Scholar
  37. Zhang, Y., Wei, T., Dong, W., Zhang, K., Sun, Y., Chen, X., Dai, N.: Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles. Sci. Rep. 4, 4850 (2014a)ADSGoogle Scholar
  38. Zhang, Y., Zhang, K., Zhang, T., Sun, Y., Chen, X., Dai, N.: istinguishing plasmonic absorption modes by virtue of inversed architectures with tunable atomic-layer-deposited spacer layer. Nanotechnology 25(50), 504004 (2014b)CrossRefGoogle Scholar
  39. Zhao, D., Meng, L., Gong, H., Chen, X., Chen, Y., Yan, M., Li, Q., Qiu, M.: Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Appl. Phys. Lett. 104(22), 221107 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations