Resonant control of fluorescence from aluminium doped zinc oxide films

  • Leonid Dolgov
  • Vladimir I. Kondratiev
  • Ardi Loot
  • Valter Kiisk
  • Sven Lange


Moderate fluorescence from aluminium doped zinc oxide films is detected. It is shown that this defect-related fluorescence can be controlled for the films deposited on the gilded glass and attached to the semicylinder prism. Namely the changes in the spectral shape, intensity and polarization of fluorescence were detected for certain resonant angles in case of detection through the prism. Maxima in fluorescence intensity were obtained for detection angles corresponding to minima in light reflection. The strength of electric field inside the layered structure is calculated and analysed. On the basis of this analysis coupling of fluorescent light with hybrid waveguide-plasmonic and waveguide modes at resonant detection angles is considered as the cause for obtained directional fluorescence.


Aluminium doped zinc oxide Directional resonance fluorescence 



This work was supported by the Estonian Research Council (institutional project IUT34-27) and partially by ETF9283, Marie Curie ILSES Project No. 612620 and NATO SPS project NUKR.SFPP984702.


  1. Abeles, F.: Optical properties of thin absorbing films. J. Opt. Soc. Am. 47(6), 473–482 (1957). doi: 10.1364/JOSA.47.000473 ADSCrossRefGoogle Scholar
  2. Badugu, R., et al.: Radiative decay engineering 6: fluorescence on one-dimensional photonic crystals. Anal. Biochem. 442(1), 83–96 (2013). doi: 10.1016/j.ab.2013.07.021 CrossRefGoogle Scholar
  3. Badugu, R., et al.: Fluorescence spectroscopy with metal–dielectric waveguides. J. Phys. Chem. C 119, 16245–16255 (2015). doi: 10.1021/acs.jpcc.5b04204 CrossRefGoogle Scholar
  4. Boiko, V., et al.: Angular shaping of fluorescence from synthetic opal-based photonic crystal. Nanoscale Res. Lett. 10, 97 (2015). doi: 10.1186/s11671-015-0781-y ADSCrossRefGoogle Scholar
  5. Calander, N.: Surface plasmon-coupled emission and fabry–perot resonance in the sample layer: a theoretical approach. J. Phys. Chem. B 109(29), 13957–13963 (2005). doi: 10.1021/jp0510544 CrossRefGoogle Scholar
  6. Chilwell, J., Hodgkinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. 1(7), 742–753 (1984). doi: 10.1364/JOSAA.1.000742 ADSCrossRefGoogle Scholar
  7. Dong, Z., et al.: Fluorescent properties of ZnO nanostructures fabricated by hydrothermal method. J. Nanomater. 2012, 251276 (2012). doi: 10.1155/2012/251276 Google Scholar
  8. Grandidier, J., et al.: Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide. J. Microsc. 239(2), 167–172 (2010). doi: 10.1111/j.1365-2818.2010.03368.x MathSciNetGoogle Scholar
  9. Gryczynski, I., et al.: Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324(2), 170–182 (2004). doi: 10.1016/j.ab.2003.09.036 CrossRefGoogle Scholar
  10. Hakala, T., et al.: Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett. 103, (053602-1)–(053602-4) (2009). doi: 10.1103/PhysRevLett.103.053602 ADSCrossRefGoogle Scholar
  11. Jungwirth, N., et al.: A single-molecule approach to ZnO defect studies: single photons and single defects. J. Appl. Phys. 116, 043509 (2014). doi: 10.1063/1.4890979 ADSCrossRefGoogle Scholar
  12. Kondratiev, V., et al.: Low temperature sol–gel technique for processing Al-doped zinc oxide films. Mater. Phys. Mech. 17(1), 38–46 (2013).
  13. Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23A, 2135–2136 (1968)ADSGoogle Scholar
  14. Lackowicz, J.: Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001). doi: 10.1006/abio.2001.5377 CrossRefGoogle Scholar
  15. Lakowicz, J.: Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal. Biochem. 324(2), 153–169 (2004). doi: 10.1016/j.ab.2003.09.039 CrossRefGoogle Scholar
  16. Liu, H., et al.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice Microstruct. 48, 458–484 (2010). doi: 10.1016/j.spmi.2010.08.011 ADSCrossRefGoogle Scholar
  17. Liu, F., Nunzi, J.: Enhanced organic light emitting diode and solar cell performances using silver nano-clusters. Org. Electron. 13(9), 1623–1632 (2012). doi: 10.1016/j.orgel.2012.04.027 CrossRefGoogle Scholar
  18. Loot, A., et al.: Goniometric setup for plasmonic measurements and characterization of optical coatings. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds.) Nanomaterials Imaging Techniques, Surface Studies, and Applications Springer Proceedings in Physics, vol. 146, pp. 130–145. Springer, New York (2013). doi: 10.1007/978-1-4614-7675-7. ISBN 978-1-4614-7674-0CrossRefGoogle Scholar
  19. Noginov, M., et al.: Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008). doi: 10.1103/PhysRevLett.101.226806 ADSCrossRefGoogle Scholar
  20. Oulton, R., et al.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi: 10.1038/nphoton.2008.131 CrossRefGoogle Scholar
  21. Purcell, E.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  22. Rakić, A., et al.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)ADSCrossRefGoogle Scholar
  23. Ray, K., et al.: Plasmon-controlled fluorescence towards high-sensitivity optical sensing. Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2010). doi: 10.1007/10_2008_9 ADSGoogle Scholar
  24. Sainidou, R., et al.: Extraordinary all-dielectric light enhancement over large volumes. Nano Lett. 10, 4450–4455 (2010)ADSCrossRefGoogle Scholar
  25. Santory, C.: Single defects in diamonds. In: Migdall, A., Polyakov, S., Fan, J., Bienfang, J. (eds.) Single Photon Generation and Detection Physics and Applications, vol. 45. Elsevier, Amsterdam (2013). ISBN 9780123876959Google Scholar
  26. Seidel, J., et al.: Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005)ADSCrossRefGoogle Scholar
  27. Stockman, M.: Spasers explained. Nat. Photonics 2, 327–329 (2008). doi: 10.1038/nphoton.2008.85 ADSCrossRefGoogle Scholar
  28. Tumkur, T., et al.: Plasmon-mediated emission in the strong coupling regime. In: Proceedings of the CLEO: QELS_Fundamental Science 2015 conference FW3E.4 (2015), ISBN: 978-1-55752-968-8Google Scholar
  29. Winter, G., Barnes, W.: Emission of light through thin silver films via near-field coupling to surface plasmon polaritons. Appl. Phys. Lett. 88, 051109 (2006). doi: 10.1063/1.2170426 ADSCrossRefGoogle Scholar
  30. Yuk, J., et al.: Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip. Biosens. Bioelectron. 26, 3213–3218 (2011). doi: 10.1016/j.bios.2010.12.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Leonid Dolgov
    • 1
    • 2
  • Vladimir I. Kondratiev
    • 1
  • Ardi Loot
    • 1
  • Valter Kiisk
    • 1
  • Sven Lange
    • 1
  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia
  2. 2.School of Chemistry and Chemical EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations