Advertisement

Generating multiple focal structures with high NA parabolic mirror using azimuthally polarized pair of vortices

  • C. Amala Prathiba Janet
  • M. Udhayakumar
  • K. B. Rajesh
  • Z. Jaroszewicz
  • T. V. S. Pillai
Article

Abstract

In this article, a simple method to tailor the focal patterns of high NA parabolic mirror by manipulating the position of vortex pair of opposite topological charge nested in an azimuthally polarized Gaussian beam is demonstrated numerically using Vector Diffraction Theory. It is observed that proper manipulation of position between the vortex pair generates novel focal patterns including focal hole, transversely polarized focal spot and flat top focus of sub wavelength scale are generated.

Keywords

Tight focusing Vector diffraction theory High numerical aperture parabolic mirror Azimuthally polarized vortices pair 

References

  1. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid’’ entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)ADSCrossRefGoogle Scholar
  2. Bouhelier, A., Beversluis, M., Hartschuh, A., Novotny, L.: Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)ADSCrossRefGoogle Scholar
  3. Brandao, P.A., Julião, C.S.: Symmetry breaking of optical vortices: birth and annihilation of singularities in the evanescent field. Opt. Lett. 36, 1563–1565 (2011)ADSCrossRefGoogle Scholar
  4. Chen, Z., Pu, J., Zhao, D.: Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices. Phys. Lett. A. 375, 2958–2963 (2011)ADSCrossRefMATHGoogle Scholar
  5. Cho, Seong-Woo, Kim, Hwi, Hahn, Joonku, Lee, Byoungho: Generation of multiple vortex-cones by direct-phase modulation of annular aperture array. Appl. Opt. 51, 7295–7302 (2012)ADSCrossRefGoogle Scholar
  6. Davidson, N., Bokor, N.: High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 29, 1318–1320 (2004)ADSCrossRefGoogle Scholar
  7. Dickey, F.M, Holswade, S.C.: Laser beam shaping: theory and techniques (Marcel Dekker, 2000)Google Scholar
  8. Engel, E., Huse, N., Klar, T.A., Hell, S.W.: Creating λ/3 focal holes with a Mach–Zehnder interferometer. Appl. Phys. B 77, 11–17 (2003)CrossRefGoogle Scholar
  9. Fang, G., Tian, B., Pu, J.: Focusing properties of the double-vortex beams through a high numerical-aperture objective. Opt. Laser Technol. 44, 441–445 (2012)ADSCrossRefGoogle Scholar
  10. Freund, I., Kessler, D.A.: Critical point trajectory bundles in singular wave fields. Opt. Commun. 187, 71–90 (2001)ADSCrossRefGoogle Scholar
  11. Guo, L., Tang, Z., Liang, C., Tan, Z., Liu, J.: Focal properties of cylindrically polarized beams by a high numerical aperture parabolic mirror. Proc. SPIE 7517, 75170A–75171A (2009)ADSCrossRefGoogle Scholar
  12. Hao, X., Kuang, C.F., Li, Y.H., Liu, X.: A focal spot with variable intensity distribution for optical tweezers. Laser Phys. Lett. 10, 045602 (2013)ADSCrossRefGoogle Scholar
  13. Heckenberg, N.R., Vaupel, M., Malos, J.T., Weiss, C.O.: Optical-vortex pair creation and annihilation and helical astigmatism of a nonplanar ring resonator. Phys. Rev. A 54, 236–239 (1996)CrossRefGoogle Scholar
  14. Homburg, O., Mitra, T.: Gaussian-to-top-hat beamshaping: an overview of parameters, methods, and applications. Proc. SPIE 8236, 82360A (2012)ADSCrossRefGoogle Scholar
  15. Huang, K., et al.: Optimization-free super-oscillatory lens using phase and amplitude masks. Laser Photon. Rev. 8, 152–157 (2014)CrossRefGoogle Scholar
  16. Klar, T.A., Engel, E., Hell, S.W.: Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64, 066613 (2001)ADSCrossRefGoogle Scholar
  17. Lalithambigai, K., Anbarasan, P.M., Rajesh, K.B.: Generation of needle of transversely polarized beam using complex spiral phase mask. Opt. Quantum Electron. 47, 1027–1033 (2015)CrossRefGoogle Scholar
  18. Lieb, M., Meixner, A.: A high numerical aperture parabolic mirror as imaging device for confocal microscopy. Opt. Express 8, 458–474 (2001)ADSCrossRefGoogle Scholar
  19. Merenda, F., Rohner, J., Fournier, J.-M., Salathe, R.: Miniaturized high NA focusing-mirror multiple optical tweezers. Opt. Express 15(10), 6075–6086 (2007)ADSCrossRefGoogle Scholar
  20. Qin, F., Huang, K., Wu, J., Jiao, J., Luo, X., Qiu, C., Hong, M.: Shaping a sub wavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 5, 9977 (2015)ADSCrossRefGoogle Scholar
  21. Romero, L.A., Dickey, F.M.: Lossless laser beam shaping. J. Opt. Soc. Am. A 13, 751–760 (1996)ADSCrossRefGoogle Scholar
  22. Roux, F.S.: Dynamical behaviour of optical vortices. Opt. Soc. Am. B. 12, 12–15 (1995)Google Scholar
  23. Shu, G., Dietrich, M.R., Kurz, N., Blinov, B.B.: Trapped ion imaging with a high numerical aperture spherical mirror. J. Phys. B At. Mol. Phys. 42, 154005–154010 (2009)ADSCrossRefGoogle Scholar
  24. Sick, B., Hecht, B., Novotny, L.: Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482 (2000)ADSCrossRefGoogle Scholar
  25. Sundaram, C.M., Prabakaran, K., Anbarasan, P.M., Rajesh, K.B., Musthafa, A.M.: Creation of super long transversely polarized optical needle using azimuthally polarized multi Gaussian beam. Chin. Phys. Lett. 33(6), 64203–64206 (2016)CrossRefGoogle Scholar
  26. Suresh, P., Mariyal, C., Rajesh, K.B., Pillai, T.V.S., Jaroszewicz, Z.: Generation of a strong uniform transversely polarized no diffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Appl. Opt. 52, 849–853 (2013)CrossRefGoogle Scholar
  27. Varga, P., Török, P.: Focusing of electromagnetic waves by paraboloid mirrors. I. Theory. J. Opt. Soc. Am. A. 17, 2081–2089 (2000a)ADSCrossRefGoogle Scholar
  28. Varga, P., Török, P.: Focusing of electromagnetic waves by paraboloid mirrors. II. Numerical results. J. Opt. Soc. Am. A. 17, 2090–2095 (2000b)ADSCrossRefGoogle Scholar
  29. Ye, H., et al.: Creation of longitudinally polarized subwavelength hotspot with ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method. Laser Phys. Lett. 10, 065004 (2013)ADSCrossRefGoogle Scholar
  30. Youngworth, K.S., Brown, T.G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)ADSCrossRefGoogle Scholar
  31. Yuan, G.H., Wei, S.B., Yuan, X.C.: Generation of non-diffracting quasi-circular polarization beams using an amplitude modulated phase hologram. Opt. Lett. 36, 3479 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • C. Amala Prathiba Janet
    • 1
  • M. Udhayakumar
    • 2
  • K. B. Rajesh
    • 2
  • Z. Jaroszewicz
    • 3
    • 4
  • T. V. S. Pillai
    • 5
  1. 1.Department of PhysicsSt.Xavier’s Catholic College of EngineeringNagercoilIndia
  2. 2.Department of PhysicsChikkanna Government Arts CollegeTiruppurIndia
  3. 3.Department of Physical OpticsInstitute of Applied OpticsWarsawPoland
  4. 4.National Institute of TelecommunicationsWarsawPoland
  5. 5.Department of PhysicsUniversity College of EngineeringNagercoilIndia

Personalised recommendations