A theoretical study of influence of charge carrier mobility in PTB7:PC71BM bulk heterojunction organic solar cells

  • S. Nazerdeylami
  • H. Rezagholipour Dizaji


In this study, an optoelectronic model is presented to simulate the structure of PTB7:PC71BM organic solar cells. This model is based on transfer matrix model for calculating optical processes and drift–diffusion model for computing both electrical and charge transport processes; the latter includes the effects of energetic disorder. In the presence of energetic disorder, the total recombination is calculated as the sum of Langevin recombination, recombination via charge transfer states, and recombination via exponential tail states. We investigate the influence of charge carrier mobility on photovoltaic parameters, charge transport, and recombination rate. Simulation results indicate that open circuit voltage is governed by the charge carrier mobility and power conversion efficiency as a function of charge carrier mobility has a maximum value at μ = 10−2 (cm2/Vs). Simulated current density–voltage curve reveals good agreement with published experimental results. The open circuit voltage is calculated as a function of generation rate. It is found that the slope of lines increases with decreasing the charge carrier mobility.


Charge carrier mobility Organic solar cells PTB7:PC71BM Recombination rate Recombination via exponential state 


  1. Albrecht, S., Schafer, S., Lange, I., Yilmaz, S., Dumsch, I., Allard, S., Scherf, U., Hertwig, A., Neher, D.: Light management in PCPDTBT:PC70BM solar cells: a comparison of standard and inverted device structures. Org. Electron. 13, 615–622 (2012)CrossRefGoogle Scholar
  2. Armin, A., Velusamy, M., Burn, P.L., Meredith, P., Pivrikas, A.: Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. Appl. Phys. Lett. 101, 083306–083310 (2012)ADSCrossRefGoogle Scholar
  3. Baumann, A., Lorrmann, J., Rauh, D., Deibel, C., Dyakonov, V.: A new approach for probing the mobility and lifetime of photogenerated charge carriers in organic solar cells under real operating conditions. Adv. Mater. 24, 4381–4386 (2012)CrossRefGoogle Scholar
  4. Belmonte, G.G., Boix, P.P., Bisquert, J., Lenes, M., Bolink, H.J., Rosa, A.L., Filippone, S., Martin, N.: Influence of the intermediate density-of-states occupancy on open-circuit voltage of bulk heterojunction solar cells with different fullerene acceptors. J. Phys. Chem. Lett. 1, 2566–2571 (2010)CrossRefGoogle Scholar
  5. Blakesley, J.C., Neher, D.: Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Phys. Rev. B 84, 075210–075222 (2011)ADSCrossRefGoogle Scholar
  6. Bou, A., Torchio, P., Vedraine, S., Barakel, D., Lucas, B., Bernède, J.C., Thoulon, P.Y., Ricci, M.: Numerical optimization of multilayer electrodes without indium for use in organic solar cells. Sol. Energy Mater. Sol. Cells 125, 310–317 (2014)CrossRefGoogle Scholar
  7. Braun, C.L.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984)ADSCrossRefGoogle Scholar
  8. Burkhard, G.F., Hoke, E.T., McGehee, M.D.: Accounting for interference, scatterin, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater. 22, 3293–3297 (2010)CrossRefGoogle Scholar
  9. Chen, G., Sasabe, H., Wang, Z., Wang, X.F., Hong, Z., Yang, Y., Kido, J.: Co-evaporated bulk heterojunction solar cells with 6.0% efficiency. Adv. Mater. 24, 2768–2773 (2012)CrossRefGoogle Scholar
  10. Chen, G., Wang, T., Li, C., Yang, L., Xu, T., Zhu, W., Gao, Y., Wei, B.: Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer. Org. Electron. 36, 50–56 (2016)CrossRefGoogle Scholar
  11. Chowdhury, M.M., Alam, M.K.: A physics-based analytical model for bulk heterojunction organic solar cells incorporating monomolecular recombination mechanism. Curr. Appl. Phys. 14, 340–344 (2014)ADSCrossRefGoogle Scholar
  12. Coehoorn, R., Pasveer, W.F., Bobbert, P.A., Michels, M.A.J.: Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B 72, 155206–155226 (2005)ADSCrossRefGoogle Scholar
  13. Cottaar, J., Bobbert, P.A.: Calculating charge-carrier mobilities in disordered semiconducting polymers: mean field and beyond. Phys. Rev. B 74, 115204–115210 (2006)ADSCrossRefGoogle Scholar
  14. Deibel, C., Wagenpfahl, A., Dyakonov, V.: Influence of charge carrier mobility on the performance of organic solar cells. Phys. Status Solidi 2, 175–177 (2008)Google Scholar
  15. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)CrossRefGoogle Scholar
  16. Ebenhoch, B., Thomson, S.A.J., Genevicˇius, K., Juška, G., Samuel, I.D.W.: Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Org. Electron. 22, 62–68 (2015)CrossRefGoogle Scholar
  17. Heavens, O.S.: Optical Properties of Thin Solid Films. Dover, New York (1965)Google Scholar
  18. Hedley, G.J., Ward, A.J., Alekseev, A., Howells, C.T., Martins, E.R., Serrano, L.A., Cooke, G., Ruseckas, A., Samuel, I.D.W.: Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat. Commun. 4, 2867–2877 (2013)ADSCrossRefGoogle Scholar
  19. Kirchartz, T., Pieters, B.E., Taretto, K., Rau, U.: Electro-optical modeling of bulk heterojunction solar cells. J. Appl. Phys. 104, 094513–094522 (2008)ADSCrossRefGoogle Scholar
  20. Kirchartz, T., Pieters, B.E., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene: fullerene solar cells. Phys. Rev. B 83, 115209–115213 (2011)ADSCrossRefGoogle Scholar
  21. Koh, W.S., Akimov, Y.A., Goh, W.P., Li, Y.: Three-dimensional optoelectronic model for organic bulk heterojunction solar cells. IEEE J. Photovolt. 1, 84–92 (2011)CrossRefGoogle Scholar
  22. Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104–052107 (2006)ADSCrossRefGoogle Scholar
  23. Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205–085209 (2005a)ADSCrossRefGoogle Scholar
  24. Koster, L.J.A., Mihailetchi, V.D., Ramaker, R., Blom, P.W.M.: Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl. Phys. Lett. 86, 123509–123512 (2005b)ADSCrossRefGoogle Scholar
  25. Kotlarski, J.D., Blom, P.W.M., Koster, L.J.A., Lenes, M., Slooff, L.H.: Combined optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells. J. Appl. Phys. 103, 084502–084507 (2008)ADSCrossRefGoogle Scholar
  26. Krebs, F.C., Sondergaard, R., Jorgensen, M.: Printed metal back electrodes for roll to roll fabricated polymer solar cells studied using the LBIC technique. Sol. Energy Mater. Sol. Cells 95, 1348–1353 (2011)CrossRefGoogle Scholar
  27. Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805–256810 (2011)ADSCrossRefGoogle Scholar
  28. Langevin, P.: Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys. 28, 433–530 (1903)Google Scholar
  29. Liang, C., Wang, Y., Li, D., Ji, X., Zhang, F., He, Z.: Modeling and simulation of bulk heterojunction polymer solar cells. Sol. Energy Mater. Sol. Cells 127, 67–86 (2014)CrossRefGoogle Scholar
  30. Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293–5301 (2014)ADSCrossRefGoogle Scholar
  31. MacKenzie, R.C.I., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT:PCBM solar cells. J. Phys. Chem. C 115, 9806–9813 (2011)CrossRefGoogle Scholar
  32. MacKenzie, R.C.I., Shuttle, C.G., Chabinyc, M.L., Nelson, J.: Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv. Energy Mater. 2, 662–669 (2012)CrossRefGoogle Scholar
  33. Mahmoudloo, A., Ahmadi-Kandjani, S.: Influence of the temperature on the charge transport and recombination profile in organic bulk heterojunction solar cells: a drift–diffusion study. Appl. Phys. A 119, 1523–1529 (2015)ADSCrossRefGoogle Scholar
  34. Mihailetchi, V., Wildeman, J., Blom, P.: Space-charge limited photo-current. Phys. Rev. Lett. 94, 126602–126606 (2005)ADSCrossRefGoogle Scholar
  35. Mandoc, M.M., Kooistra, F.B., Hummelen, J.C., de Boer, B., Blom, P.W.M.: Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 91, 263505–263508 (2007a)ADSCrossRefGoogle Scholar
  36. Mandoc, M.M., Koster, L.J.A., Blom, P.W.M.: Optimum charge carrier mobility in organic solar cells. Appl. Phys. Lett. 90, 133504–133507 (2007b)ADSCrossRefGoogle Scholar
  37. Mandoc, M.M., Veurman, W., Koster, L.J.A., de Boer, B., Blom, P.W.M.: Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells. Adv. Funct. Mater. 17, 2167–2173 (2007c)CrossRefGoogle Scholar
  38. Mauer, R., Howard, I.A., Laquai, F.: Effect of nongeminate recombination on fill factor in polythiophene/methanofullerene organic solar cells. J. Phys. Chem. Lett. 1, 3500–3505 (2010)CrossRefGoogle Scholar
  39. Namkoong, G., Kong, J., Samson, M., Hwang, I.W., Lee, K.: Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Org. Electron. 14, 74–79 (2013)CrossRefGoogle Scholar
  40. Onsager, L.: Initial recombination of ions. Phys. Rev. 54, 554–557 (1938)ADSCrossRefGoogle Scholar
  41. Petoukhoff, C.E., Vijapurapu, D.K., O’Carroll, D.M.: Computational comparison of conventional and inverted organic photovoltaic performance parameters with varying metal electrode surface workfunction. Sol. Energy Mater. Sol. Cells 120, 572–583 (2014)CrossRefGoogle Scholar
  42. Pettersson, L.A.A., Roman, L.S., Inganas, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)ADSCrossRefGoogle Scholar
  43. Pivrikas, P., Neugebauer, H., Sariciftci, N.S.: Charge carrier lifetime and recombination in bulk heterojunction solar cells. IEEE J. Sel. Top. Quantum Electron. 16, 1746–1758 (2010)CrossRefGoogle Scholar
  44. Proctor, C.M., Kim, C., Neher, D., Nguyen, T.Q.: Nongeminate recombination and charge transport limitations in diketopyrrolopyrrole-based solution-processed small molecule solar cells. Adv. Funct. Mater. 23, 3584–3594 (2013)CrossRefGoogle Scholar
  45. Qi, B., Wang, J.: Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315–24325 (2012)MathSciNetCrossRefGoogle Scholar
  46. Rauh, D., Deibel, C., Dyakonov, V.: Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells. Adv. Funct. Mater. 22, 3371–3377 (2012)CrossRefGoogle Scholar
  47. Shuttle, C.G., Maurano, A., Hamilton, R., O’Regan, B., de Mello, J.D.C., Durrant, J.R.: Charge extraction analysis of charge carrier densities in a poly-thiophene/fullerene solar cell: analysis of the origin of the device dark current. Appl. Phys. Lett. 93, 183501–183504 (2008a)ADSCrossRefGoogle Scholar
  48. Shuttle, C.G., O’Regan, B., Ballantyne, A.M., Nelson, J., Bradley, D.D.C., de Mello, J., Durrant, J.R.: Experimental determination of the rate law for charge carrier decay in a polythiophene: fullerene solar cell. Appl. Phys. Lett. 92, 093311–093314 (2008b)ADSCrossRefGoogle Scholar
  49. Sievers, D.W., Shrotriya, V., Yang, Y.: Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509–114516 (2006)ADSCrossRefGoogle Scholar
  50. Soldera, M., Taretto, K., Kirchartz, T.: Comparison of device models for organic solar cells: band-to-band vs. tail states recombination. Phys. Status Solidi A 209, 207–215 (2012)ADSCrossRefGoogle Scholar
  51. Srinivasan, M.V., Tsuda, N., Shinc, P.K., Ochiai, S.: Performance evaluation of PTB7: PC71BM based organic solar cells fabricated by spray coating method using chlorine free solvent. RSC Adv. 5, 56262–56269 (2015)CrossRefGoogle Scholar
  52. Street, R.A., Schoendorf, M., Roy, A., Lee, J.H.: Interface state recombination in organic solar cells. Phys. Rev. B 81, 205307–205318 (2010)ADSCrossRefGoogle Scholar
  53. Tress, W., Leo, K., Riede, M.: Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: a drift–diffusion simulation study. Phys. Rev. B 85, 155201–155211 (2012)ADSCrossRefGoogle Scholar
  54. Wagenpfahl, A., Deibel, C., Dyakonov, V.: Organic solar cell efficiencies under the aspect of reduced surface recombination velocities. IEEE J. Sel. Top. Quantum Electron. 16, 1759–1763 (2010)CrossRefGoogle Scholar
  55. Wetzelaer, G.J.A.H., Kuik, M., Blom, P.W.M.: Identifying the nature of charge recombination in organic solar cells from charge-transferstate electroluminescence. Adv. Energy Mater. 2, 1232–1237 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of PhysicsSemnan UniversitySemnanIslamic Republic of Iran

Personalised recommendations