Spectral response characteristics of novel ion-implanted planar GaAs blocked-impurity-band detectors in the terahertz domain

  • Xiaodong Wang
  • Bingbing Wang
  • Yulu Chen
  • Liwei Hou
  • Wei Xie
  • Xiaoyao Chen
  • Ming Pan
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016


Spectral response characteristics of novel planar GaAs blocked-impurity-band (BIB) detector with the absorption region formed by ion implantation have been investigated. Processing technology and simulation method are described in detail. For obtaining a deep and flat implantation region, four-time-implantation scheme with different implantation energy and dose is proposed. Our results show that the novel planar GaAs BIB detector can response radiations with wavelength range from 165 to 400 μm, corresponding to frequency range from 750 GHz to 1.8 THz, which is perfectly suitable for the security application. An empirical formula is proposed to predict the dependence of spectral width on the depth of absorption region. It is demonstrated that a trade-off between responsivity and dark current has to be made for the optimal depth of absorption region.


GaAs Blocked-impurity-band (BIB) Blocking region Absorption region Dark current Spectral response 



This work was supported by the National Natural Science Foundation of China (Grant No. 61404120).


  1. Ando, K., Hoffman, A., Love, P., Toth, A., Anderson, C., Chapman, G., McCreight, C., Ennico, K., McKelvey, M., Mvmurray, R.: Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications. Proc. SPIE 5074, 648–657 (2003)ADSCrossRefGoogle Scholar
  2. Beckmann, J., Marchetti, B., von Chrzanowski, L.S., Ritter, E., Puskar, L., Aziz, E.F., Schade, U.: Optical constants of harmful and highly energetic liquids for application to THz screening systems. IEEE Trans. Terahertz Sci. Technol. 6, 396–407 (2016)ADSCrossRefGoogle Scholar
  3. Beeman, J.W., Goyal, S., Reichertz, L.A., Haller, E.E.: Ion-implanted Ge: B far-infrared blocked-impurity-band detectors. Infrared Phys. Technol. 51, 60–65 (2007)ADSCrossRefGoogle Scholar
  4. Cardozo, B.L., Haller, E.E., Reichertz, L.A., Beeman, J.W.: Far-infrared absorption in GaAs: Te liquid phase epitaxial films. Appl. Phys. Lett. 83, 3990–3992 (2003)ADSCrossRefGoogle Scholar
  5. Cardozo, B.L., Reichertz, L.A., Beeman, J.W., Haller, E.E.: Characterization of liquid phase epitaxial GaAs for blocked-impurity-band far-infrared detectors. Infrared Phys. Technol. 46, 400–407 (2005)ADSCrossRefGoogle Scholar
  6. Franke, C., Walther, M., Helm, M., Schneider, H.: Two-photon quantum well infrared photodetectors below 6 THz. Infrared Phys. Technol. 70, 30–33 (2015)ADSCrossRefGoogle Scholar
  7. Fujii, G., Ukibe, M., Ohkubo, M.: Improvement of soft X-ray detection performance in superconducting-tunnel-junction array detectoss with close-packed arrangement by three-dimensional structure. Superconduct. Sci. Technol. 28, 104005 (2015)ADSCrossRefGoogle Scholar
  8. Gualtieri, R., Battistelli, E.S., Cruciani, A., de Bernardis, P., Biasotti, M., Corsini, D., Gatti, F., Lamagna, L., Masi, S.: Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument. J. Low Temp. Phys. 184, 527–533 (2016)ADSCrossRefGoogle Scholar
  9. Guo, N., Hu, W., Chen, X., Wang, L., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)ADSCrossRefGoogle Scholar
  10. Haegel, N.M.: BIB detector development for the far Infrared: from Ge to GaAs. Proc. SPIE 4999, 182–194 (2003)ADSCrossRefGoogle Scholar
  11. Hanaoka, M., Kaneda, H., Oyabu, S., Yamagishi, M., Hattori, Y., Ukai, S., Shichi, K., Wada, T., Suzuki, T., Watanabe, K., Nagase, K., Baba, S., Kochi, C.: Development of blocked-impurity-band type Ge detectors fabricated with the surface-activated wafer bonding method for far-infrared astronomy. J. Low Temp. Phys. 184, 225–230 (2016)ADSCrossRefGoogle Scholar
  12. Hu, W., Wang, L., Chen, X., Guo, N., Miao, J., Yu, A., Lu, W.: Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Opt. Quantum Electron. 45, 713–720 (2013)CrossRefGoogle Scholar
  13. Katterloher, R., Jakob, G., Konuma, M., Krabbe, A., Haegel, N., Samperi, S.A., Beeman, J.W., Haller, E.E.: Liquid phase expitaxy centrifuge for growth of ultra-pure gallium arsenide for far infrared photoconductors. Proc. SPIE 4486, 200–208 (2002)ADSCrossRefGoogle Scholar
  14. Knipper, R., Brahm, A., Heinz, E., May, T., Notni, G., Meyer, H.G., Tunnermann, A., Popp, J.: THz absorption in fabric and its impact on body scanning for security application. IEEE Trans. Terahertz Sci. Technol. 5, 999–1004 (2015)ADSCrossRefGoogle Scholar
  15. Li, W., Huang, Z., Wang, J., Li, M., Gou, J., Jiang, Y.: Thermal crosstalk simulation and measurement of linear terahertz detector arrays. Infrared Phys. Technol. 73, 73–77 (2015)ADSCrossRefGoogle Scholar
  16. Liao, K.S., Li, N., Liu, X.H., Huang, L., Zeng, Q.Y., Zhou, X.H., Li, Z.F.: Ion-implanted Si: P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection. Proc. SPIE 8909, 890913 (2013)CrossRefGoogle Scholar
  17. Liao, K.S., Li, N., Wang, C., Li, L., Jing, Y.L., Wen, J., Li, M.Y., Wang, H., Zhou, X.H., Li, Z.F.: Extended mode in blocked impurity band detectors for terahertz radiation detection. Appl. Phys. Lett. 14, 143501 (2014)ADSCrossRefGoogle Scholar
  18. Petroff, M.D., and Stapelbroek, M.G.: Blocked Impurity Band Detectors. US Patent. No.4,568,960 (1986)Google Scholar
  19. Qiu, W.C., Hu, W.D., Chen, L., Lin, C., Cheng, X.A., Chen, X.S., Lu, W.: Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Trans. Electron Devices 62, 1926–1931 (2015)ADSCrossRefGoogle Scholar
  20. Rabanus, D., Graf, U.U., Philipp, M., Ricken, O., Stutzki, J., Vowinkel, B., Wiedner, M.C., Walther, C., Fischer, M., Faist, J.: Phase locking of a 1.5 THz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver. Opt. Express 17, 1159–1168 (2009)ADSCrossRefGoogle Scholar
  21. Reichertz, L.A., Beeman, J.W., Cardozo, B.L., Haegel, N.M., Haller, E.E., Jakob, G., Katterloher, R.: GaAs BIB photodetector development for far-infrared astronomy. Proc. SPIE 5543, 231–238 (2004)ADSCrossRefGoogle Scholar
  22. Shishido, H., Miyajima, S., Narukami, Y., Oikawa, K., Harada, M., Oku, T., Arai, M., Hidaka, M., Fjimaki, A., Ishida, T.: Neutron detection using a current biased kinetic inductance detector. Appl. Phys. Lett. 107, 232601 (2015)ADSCrossRefGoogle Scholar
  23. Stillman, G.E., Wolfe, C.M., Melngailis, I., Parker, C.D., Tannenwald, P.E., Dimmock, J.O.: Far-infrared photoconductivity in high purity epitaxial GaAs. Appl. Phys. Lett. 13, 83–84 (1968)ADSCrossRefGoogle Scholar
  24. Sturge, M.D.: Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962)ADSCrossRefGoogle Scholar
  25. Synopsys: Sentaurus Device User Guide. Synopsys Inc., USA (2008)Google Scholar
  26. Wang, X.D., Hu, W.D., Chen, X.S., Lu, W.: The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans. Electron Devices 59, 1393–1401 (2012)ADSCrossRefGoogle Scholar
  27. Wang, X.D., Hu, W.D., Pan, M., Hou, L.W., Xie, W., Xu, J.T., Li, X.Y., Chen, X.S., Lu, W.: Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. J. Appl. Phys. 115, 013103 (2014)ADSCrossRefGoogle Scholar
  28. Wang, W.D., Wang, B.B., Hou, L.W., Xie, W., Chen, X.Y., Pan, M.: Design consideration of GaAs-based blocked-impurity-band detector with the absorbing layer formed by ion implantation. Opt. Quantum Electron. 47, 1347–1355 (2015)CrossRefGoogle Scholar
  29. Wang, B.B., Wang, X.D., Chen, X.Y., Hou, L.W., Xie, W., Pan, M.: Acquisition of optimal operating temperature for epitaxial Si: P blocked-impurity-band detector based on temperature-dependent characteristics investigation. Opt. Quantum Electron. 48, 126 (2016a)CrossRefGoogle Scholar
  30. Wang, X.D., Wang, B.B., Hou, L.W., Xie, W., Chen, X.Y., Pan, M.: Analysis of dark current spectral response mechanisms for Si-based block-impurity-band detectors operating at terahertz regime. Opt. Quantum Electron. 48, 100 (2016b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.No. 50 Research Institute of China Electronics Technology Group CorporationShanghaiChina
  2. 2.Laboratory of Advanced MaterialFudan UniversityShanghaiChina

Personalised recommendations