Influences of Mg doping and N vacancy on the optoelectronic properties of GaN nanowires

  • Si-Hao Xia
  • Lei Liu
  • Yike Kong
  • Yu Diao


For the optimization of p-type doping processing of GaN nanowires, the influences of Mg doping and N vacancy on the optoelectronic properties of GaN nanowires are researched on the basis of first principles. The formation energy, work function, band structures, optical properties are calculated and discussed. Results show that ideal p-type GaN nanowire can be obtained through Mg doing process. However, the existence of N vacancy will weaken the p-type conductivity of Mg-doped GaN nanowires. N vacancies are urgently needed to be avoided during Mg doping process of GaN nanowires.


Mg doping N vacancy GaN nanowires Optoelectronic properties 



The authors appreciate Meishan Wang of School of Information and Electrical Engineering, Ludong University, for offering the CASTEP. This work is sponsored by The Natural Science Foundation of Jiangsu Province-China(Grant No. BK20130767), The Fundamental Research Funds for the Central Universities-China(Grant No. 30916011206), The Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institution, China (Grant No. KYLX16_0425) and The Six Talent Peaks Project in Jiangsu Province-China(Grant No. 2015-XCL-008).


  1. Agrawal, R., Espinosa, H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11, 786–790 (2011)ADSCrossRefGoogle Scholar
  2. Agrawal, B.K., Pathak, A., Agrawal, S.: Ab initio study of [001] GaN nanowires. J. Nanoparticle Res. 11, 841–859 (2008)CrossRefGoogle Scholar
  3. Brault, J., Damilano, B., Kahouli, A., Chenot, S., Leroux, M., Vinter, B.: Ultra-violet GaN/Al0.5Ga0.5N quantum dot based light emitting diodes. J. Cryst. Growth 363, 282–286 (2013)ADSCrossRefGoogle Scholar
  4. Carter, D.J., Stampfl, C.: Atomic and electronic structure of single and multiple vacancies in GaN nanowires from first-principles. Phys. Rev. B 79, 195302 (2009)ADSCrossRefGoogle Scholar
  5. Carter, D.J., Gale, J.D., Delley, B., Stampfl, C.: Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles. Phys. Rev. B 77, 115349 (2008)ADSCrossRefGoogle Scholar
  6. Cui, Z., Ke, X., Li, E., Liu, T.: Electronic and optical properties of titanium-doped GaN nanowires. Mater. Design 96, 409–415 (2016)CrossRefGoogle Scholar
  7. Du, Y., Chang, B., Wang, X., Zhang, J., Li, B., Fu, X.: Electronic structure and optical properties of Cs/GaN(0001) adsorption system. Acta Phys. Sin. 60, 057102 (2012)Google Scholar
  8. Dubrovskii, V.G., Sibirev, N.V.: Growth thermodynamics of nanowires and its application to polytypism of zinc blende III–V nanowires. Phys. Rev. B 77, 035414 (2008)ADSCrossRefGoogle Scholar
  9. Fu, N., Li, E., Cui, Z., Ma, D., Wang, W., Zhang, Y.: The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations. J. Alloys Compd. 596, 92–97 (2014)CrossRefGoogle Scholar
  10. Ge, X., Zou, J., Deng, W., Peng, X., Wang, W., Jiang, S., Ding, X., Chen, Z., Zhang, Y., Chang, B.: Theoretical analysis and modeling of photoemission characteristics of GaAs nanowire array photocathodes. Mater. Res. Express 2, 095015 (2015)ADSCrossRefGoogle Scholar
  11. Huang, P., Zong, H., Shi, J., Zhang, M., Jiang, X., Zhong, H., Ding, Y., He, Y., Lu, J., Hu, X.: Origin of 3.45 eV emission line and yellow luminescence band in gan nanowires: surface microwire and defect. ACS Nano 9, 9276–9283 (2015)CrossRefGoogle Scholar
  12. Kawakami, Y., Higashimaki, N., Doi, K., Nakamura, K., Tachibana, A.: First-principle study on the structures and electronic properties of gallium nitride nanowires. Phys. Status Solidi (c) (7), 2318–2322 (2003)Google Scholar
  13. Kong, Y., Liu, L., Xia, S., Wang, H., Wang, M.: Research on optoelectronic properties of GaN nanowire with N vacancy. Comput. Theor. Chem. 2016, 19–24 (1092)Google Scholar
  14. Lindan, P.J.D.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002)ADSCrossRefGoogle Scholar
  15. Perdew, J., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)ADSCrossRefGoogle Scholar
  16. Perdew, J., Burke, K., Ernzerhof, M.: Errata: generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  17. Qin, M., Yan, S., Wang, X., Zhang, G.: Mg doping and native N vacancy effect on electronic and transport properties of AlN nanowires. Sci. China Technol. Sci. 58, 832–839 (2015)CrossRefGoogle Scholar
  18. Tchernycheva, M., Lavenus, P., Zhang, H., Babichev, A.V., Jacopin, G., Shahmohammadi, M.: InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based P-contact. Nano Lett. 14, 2456–2465 (2014)ADSCrossRefGoogle Scholar
  19. Tsai, M.H., Jhang, Z.F., Jiang, J.Y., Tang, Y.H.: Electrostatic and structural properties of GaN nanorods/nanowires from first principles. Appl. Phys. Lett. 89, 203101 (2006)ADSCrossRefGoogle Scholar
  20. Wang, H., Liu, Y., Li, M., Zhong, M., Shen, H.: Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl. Phys. A Mater. 97, 25–29 (2009)ADSCrossRefGoogle Scholar
  21. Wang, Z., Li, J., Gao, F., Weber, W.J.: Defects in gallium nitride nanowires: first principles calculations. J. Appl. Phys. 108, 044305 (2010a)ADSCrossRefGoogle Scholar
  22. Wang, Z., Li, J., Gao, F., Weber, W.J.: Codoping of magnesium with oxygen in gallium nitride nanowires. Appl. Phys. Lett. 96, 103112 (2010b)ADSCrossRefGoogle Scholar
  23. Wang, Z., Zhang, C., Li, J., Gao, F., Weber, W.J.: First principles study of electronic properties of gallium nitride nanowires grown along different crystal directions. Comput. Mater. Sci. 50, 344–348 (2010c)CrossRefGoogle Scholar
  24. Xia, S., Liu, L., Kong, Y.: Research on quantum efficiency and photoemission characteristics of negative-electron-affinity GaN nanowire arrays photocathode. Opt. Quantum Electron. 48, 306 (2016a)CrossRefGoogle Scholar
  25. Xia, S., Liu, L., Kong, Y., Wang, H., Wang, M.: Uniaxial strain effects on the optoelectronic properties of GaN nanowires. Superlattices Microstruct. 97, 327–334 (2016b)ADSCrossRefGoogle Scholar
  26. Xia, S., Liu, L., Kong, Y., Wang, H., Wang, M.: Study of Cs absorption on (100) surface of [001]-oriented GaN nanowires: a first principle research. Appl. Surf. Sci. 387, 1110–1115 (2016c)ADSCrossRefGoogle Scholar
  27. Yang, M., Chang, B., Rao, W.: Relationship of the longer wavelength threshold and the narrower surface band gap: For GaN and GaAlN photocathodes. Optik. Int. Light Electron Opt. 127, 10710–10715 (2016)CrossRefGoogle Scholar
  28. Zou, J., Ge, X., Zhang, Y., Deng, W., Zhu, Z., Wang, W., Peng, X., Chen, Z., Chang, B.: Negative electron affinity GaAs wire-array photocathodes. Opt. Express 24, 256776 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Optoelectronic Technology, School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations