Skip to main content
Log in

New multi-mode delay differential equation model for lasers with optical feedback

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the relations between the spatially-distributed traveling wave, Lang–Kobayashi, and a new multi-mode delay differential equation models for Fabry–Perot type semiconductor diode lasers with an external optical feedback. All these models govern the dynamics of the slowly varying complex amplitudes of the optical fields and carrier density. To compare the models, we calculate the cavity modes determined by the threshold carrier density and optical frequency of the steady states in all three models. These calculations show that the Lang–Kobayashi type model is in good agreement with the traveling wave model only in the small feedback from the external cavity regimes, whereas newly derived multi-mode delay differential equation model remains correct even at moderate and large optical feedback regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arkhipov, R.M., Amann, A., Vladimirov, A.G.: Pulse repetition-frequency multiplication in a coupled cavity passively mode-locked semiconductor lasers. Appl. Phys. B 118, 539–548 (2015)

    Article  ADS  Google Scholar 

  • Bandelow, U., Radziunas, M., Sieber, J., Wolfrum, M.: Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers. IEEE J. Quantum Electron. 37, 183–188 (2001)

    Article  ADS  Google Scholar 

  • Carroll, J.E., Whiteaway, J., Plumb, D.: Distributed Feedback Semiconductor Lasers. IEE, London (1998)

    Book  Google Scholar 

  • Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW330, Katholieke Universiteit Leuven, Belgium (2001)

  • Jaurigue, L., Pimenov, A., Rachinskii, D., Schöll, E., Lüdge, K., Vladimirov, A.: Timing jitter of passively-mode-locked semiconductor lasers subject to optical feedback: a semi-analytic approach. Phys. Rev. A 92(5), 053807 (2015)

    Article  ADS  Google Scholar 

  • Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)

    Article  ADS  Google Scholar 

  • Radziunas, M., Wünsche, H.J., Krauskopf, B., Wolfrum, M. In: SPIE Proceedings Series, vol. 6184, p. 61840X (2006)

  • Radziunas, M., Tronciu, V.Z., Kürbis, C., Wenzel, H., Wicht, A.: Study of microintegrated external-cavity diode lasers: simulations, analysis, and experiments. IEEE J. Quantum Electron. 51, 2000408 (2015)

    Article  Google Scholar 

  • Schikora, S., Wünsche, H.J., Henneberger, F.: Odd-number theorem: optical feedback control at a subcritical Hopf bifurcation in a semiconductor laser. Phys. Rev. E 83, 026203 (2011)

    Article  ADS  Google Scholar 

  • Tronciu, V.Z., Mirasso, C.R., Colet, P., Hamacher, M., Benedetti, M., Vercesi, V., Annovazzi-Lodi, V.: Chaos generation and synchronization using an integrated source with an air gap. IEEE J. Quantum Electron. 46, 1840–1846 (2010)

    Article  ADS  Google Scholar 

  • Vladimirov, A.G., Turaev, D.: Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72, 033808 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Radziunas.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 2016.

Guest edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam.

Appendix: Normalization of the TW model

Appendix: Normalization of the TW model

Before normalization, the TW model within the considered Fabry–Perot-type diode laser (longitudinal coordinate \({\tilde{z}}\in [-{\tilde{L}},0]\)) reads as in Bandelow et al. (2001):

$$\begin{aligned} \left( \frac{n_g}{c_0}\partial _{{\tilde{t}}}\pm \partial _{{\tilde{z}}}\right) {\tilde{E}}_\pm&= \left( \frac{(1+i\alpha _H)g({\tilde{n}}-n_{tr})}{2} - i\delta -\frac{\alpha }{2}\right) {\tilde{E}}_\pm - \frac{\tilde{{\bar{g}}}}{2}\left( {\tilde{E}}_\pm - {\tilde{P}}_\pm \right) , \\ \frac{d}{d{\tilde{t}}}{\tilde{P}}_\pm&= \tilde{{\bar{\gamma }}} {\tilde{E}}_\pm + \left( i\tilde{{\bar{\omega }}} - \tilde{{\bar{\gamma }}}\right) {\tilde{P}}_\pm , \\ \frac{d}{d{{\tilde{t}}}} {\tilde{n}}&= \frac{I}{e{\bar{L}}\sigma } - \frac{{\tilde{n}}}{\tau _N} - \frac{c_0}{n_g{\tilde{L}}}{\mathfrak {R}}\int _{-{\tilde{L}}}^0 \left( {\tilde{E}}, g({\tilde{n}} - n_{tr}){\tilde{E}} -\tilde{{\bar{g}}}\left( {\tilde{E}} - {\tilde{P}}\right) \right) d {\tilde{z}}, \end{aligned}$$

whereas the boundary conditions for the optical fields are

$$\begin{aligned} {\tilde{E}}_+(-{\tilde{L}},{\tilde{t}})&= -r^*_f {\tilde{E}}_-(-{\tilde{L}},{\tilde{t}}),\quad {\tilde{F}}_i({\tilde{t}}) = K e^{i\phi } {\tilde{F}}_e({\tilde{t}} - \tilde{\tau }), \\ {\tilde{F}}_e({\tilde{t}})&= t_r{\tilde{E}}_+(0,{\tilde{t}}) -r^*_{r}{\tilde{F}}_i({\tilde{t}}),\quad {\tilde{E}}_-(0,{\tilde{t}}) = r_{r} {\tilde{E}}_+(0,{\tilde{t}}) +t_r{\tilde{F}}_i({\tilde{t}}). \end{aligned}$$

The model parameters \(n_g\), g, \(n_{tr}\), \(\alpha\), \(\delta\), I, \(\sigma\), and \(\tau _N\) are the group velocity index, the differential gain, the carrier density at the transparency, the field losses, the detuning from the central frequency, the injected current, the cross-section area of the active zone, and the linear carrier recombination time, respectively. \(c_0\) and e are the physical constants denoting the speed of light in vacuum and the electron charge. Finally, \(\tilde{\phantom {a}}~\) indicates original non-normalized variables, coordinates, and parameters. In this paper, the detuning \(\delta\) is such that

$$\begin{aligned} \delta = \frac{\alpha _{H}G}{2}+ \frac{\arg (-r_f^*r_r)}{2{\tilde{L}}} + \frac{\tilde{{\bar{g}}} \tilde{{\bar{\gamma }}} \tilde{{\bar{\omega }}}}{2(\tilde{{{\bar{\gamma }}}}^2+\tilde{{{\bar{\omega }}}}^2)}, ~~ G = \alpha - \frac{\ln |r_fr_r|}{{\tilde{L}}} + \frac{\tilde{{\bar{g}}}\tilde{{{\bar{\omega }}}}^2}{\tilde{{{\bar{\gamma }}}}^2+\tilde{{{\bar{\omega }}}}^2} = g(n_{th} - n_{tr}), \end{aligned}$$

where \(n_{th}\) and G are the threshold carrier density and threshold gain of the solitary diode laser, so that G represents full (radiative and non-radiative) losses of the laser in the absence of the feedback from the external cavity. This special choice of the detuning factor \(\delta\) implies the zero relative optical frequency of the solitary laser.

The normalization of the TW model is made by scaling the coordinates and the dynamical variables according to

$$z:=G {\tilde{z}}, \,\, t:=\frac{c_0G}{n_{g}} {\tilde{t}}, \,\, n:=\frac{{\tilde{n}}-n_{th}}{2 (n_{th} - n_{tr})}, \,\, {\varPsi }:= \sqrt{\frac{c_0 g \tau _N}{2n_g}} \, \tilde{{\varPsi }},$$

where \({\varPsi }\) denotes \(E^+\), \(E^-\), \(P^+\), \(P^-\), \(F_e\) or \(F_i\). The parameters of the normalized TW model (3) are related to the parameters of the original model as

$$\begin{aligned} L&= G\,{\tilde{L}},\quad \tau = \frac{c_0G}{n_{g}}\, \tilde{\tau },\quad \xi _0 = \left( i\delta -\frac{\alpha +(1+i\alpha _H)G}{2}\right) {\tilde{L}}, \quad {\bar{g}} = \frac{\tilde{{\bar{g}}}}{G},\quad \\ {\bar{\omega }}&= \frac{n_{g}}{c_0G}\,\tilde{{\bar{\omega }}},\quad {\bar{\gamma }} = \frac{n_{g}}{c_0G}\,\tilde{{\bar{\gamma }}}, \quad \epsilon = \frac{n_{g}}{c_0G\tau _N},\quad J =\frac{I-I_{th}}{2(I_{th}-I_{tr})}, \quad I_{j} = \frac{e{\tilde{L}}\sigma n_{j}}{\tau },~~ \quad j=th,tr. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radziunas, M. New multi-mode delay differential equation model for lasers with optical feedback. Opt Quant Electron 48, 470 (2016). https://doi.org/10.1007/s11082-016-0736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0736-2

Keywords

Navigation