New multi-mode delay differential equation model for lasers with optical feedback

  • Mindaugas Radziunas
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016


In this paper, we discuss the relations between the spatially-distributed traveling wave, Lang–Kobayashi, and a new multi-mode delay differential equation models for Fabry–Perot type semiconductor diode lasers with an external optical feedback. All these models govern the dynamics of the slowly varying complex amplitudes of the optical fields and carrier density. To compare the models, we calculate the cavity modes determined by the threshold carrier density and optical frequency of the steady states in all three models. These calculations show that the Lang–Kobayashi type model is in good agreement with the traveling wave model only in the small feedback from the external cavity regimes, whereas newly derived multi-mode delay differential equation model remains correct even at moderate and large optical feedback regimes.


Lasers External cavity Optical feedback Cavity mode Modeling Traveling wave Lang Kobayashi Multi-mode Delay differential equations 


  1. Arkhipov, R.M., Amann, A., Vladimirov, A.G.: Pulse repetition-frequency multiplication in a coupled cavity passively mode-locked semiconductor lasers. Appl. Phys. B 118, 539–548 (2015)ADSCrossRefGoogle Scholar
  2. Bandelow, U., Radziunas, M., Sieber, J., Wolfrum, M.: Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers. IEEE J. Quantum Electron. 37, 183–188 (2001)ADSCrossRefGoogle Scholar
  3. Carroll, J.E., Whiteaway, J., Plumb, D.: Distributed Feedback Semiconductor Lasers. IEE, London (1998)CrossRefGoogle Scholar
  4. Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW330, Katholieke Universiteit Leuven, Belgium (2001)Google Scholar
  5. Jaurigue, L., Pimenov, A., Rachinskii, D., Schöll, E., Lüdge, K., Vladimirov, A.: Timing jitter of passively-mode-locked semiconductor lasers subject to optical feedback: a semi-analytic approach. Phys. Rev. A 92(5), 053807 (2015)ADSCrossRefGoogle Scholar
  6. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980)ADSCrossRefGoogle Scholar
  7. Radziunas, M., Wünsche, H.J., Krauskopf, B., Wolfrum, M. In: SPIE Proceedings Series, vol. 6184, p. 61840X (2006)Google Scholar
  8. Radziunas, M., Tronciu, V.Z., Kürbis, C., Wenzel, H., Wicht, A.: Study of microintegrated external-cavity diode lasers: simulations, analysis, and experiments. IEEE J. Quantum Electron. 51, 2000408 (2015)CrossRefGoogle Scholar
  9. Schikora, S., Wünsche, H.J., Henneberger, F.: Odd-number theorem: optical feedback control at a subcritical Hopf bifurcation in a semiconductor laser. Phys. Rev. E 83, 026203 (2011)ADSCrossRefGoogle Scholar
  10. Tronciu, V.Z., Mirasso, C.R., Colet, P., Hamacher, M., Benedetti, M., Vercesi, V., Annovazzi-Lodi, V.: Chaos generation and synchronization using an integrated source with an air gap. IEEE J. Quantum Electron. 46, 1840–1846 (2010)ADSCrossRefGoogle Scholar
  11. Vladimirov, A.G., Turaev, D.: Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72, 033808 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany

Personalised recommendations