Advertisement

Numerically simulation of soliton OR gate with semiconductor optical amplifier-assisted delayed interferometer

  • Amer Kotb
Article
  • 102 Downloads

Abstract

Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. The performance of a soliton all-optical logic OR gate is numerically simulated at a repetition rate of 80 Gb/s. This Boolean function is realized by using a semiconductor optical amplifier (SOA)-assisted delayed interferometer (DI). The dependence of the output quality factor (Q-factor) on the soliton characteristics and SOA’s parameters has been examined and assessed. The obtained results confirm that the soliton all-optical logic OR gate implemented with logical correctness, high output and clear Q-factor.

Keywords

Simulation Soliton OR gate Semiconductor optical amplifier Delayed interferometer 

Notes

Acknowledgments

I would like to thank the expertise reviewers for the important comments that helped me to improve the content of the paper.

References

  1. Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, USA (2002)Google Scholar
  2. Agrell, E., Karlsson, M., Chraplyvy, A.R., Richardson, D.J., Krummrich, P.M., Winzer, P., Roberts, K., Fischer, J.K., Savory, S.J., Eggleton, B.J., Secondini, M., Kschischang, F. R., Lord, A.,Prat, J., Tomkos, I., Bowers, J.E., Srinivasan, S., Brandt-Pearce, M., Gisin, N.: Roadmap of optical communications,” Ch. 12: “Long-haul networks. Opt. 18, 063002 1–40 (2016)Google Scholar
  3. Arun, V., Shukla, N.K., Singh, A.K., Singh, P.: Design and performance analysis of multiple all optical logic gates in a single photonic circuit. Opt. Quantum Electron. 48(36), 1–13 (2016)Google Scholar
  4. Bonk, A.: Linear and Nonlinear Semiconductor Optical Amplifiers for Next-Generation Optical Networks. KIT Scientific Publishing, Germany (2013)Google Scholar
  5. Borri, P., Scaffetti, S., Mørk, J., Langbein, W., Hvam, J.M., Mecozzi, A.: Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers. Opt. Commun. 164, 51–55 (1999)ADSCrossRefGoogle Scholar
  6. Dong, H., Wang, Q., Zhu, G., Jaques, J., Piccirilli, A.B., Dutta, N.K.: Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer. Opt. Commun. 242, 479–484 (2004)ADSCrossRefGoogle Scholar
  7. Doran, N.J., Blow, K.J., Wood, D.: Soliton logic elements for all-optical signal processing. Proc. of SPIE on Optoele. Materials, Devices, Packaging, and Interconnects. 836, 238-243 (1988)Google Scholar
  8. Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific, New York (2013)CrossRefGoogle Scholar
  9. Hall, K.L., Robinson, B.S.: Bit error rate characterization of 100 Gb/s all-optical demultiplexing. In: Proceedings of conference on Lasers and Electro-Optics (CLEO), 214–215 (1999)Google Scholar
  10. Houbavlis, T., Zoiros, K.E.: Ultrafast all-optical exclusive OR operation with semiconductor optical amplifier-assisted fiber Sagnac switch. Opt. Eng. 42, 2481–2482 (2003)ADSCrossRefGoogle Scholar
  11. Islam, M.N., Soccolich, C.E., Gordon, J.P.: Ultrafast digital soliton logic gates. Opt. and Quantum Electron. 24, S1215–S1235 (1992)CrossRefGoogle Scholar
  12. Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: 10 Gbits all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures. Electron. Lett. 42, 303–307 (2006)CrossRefGoogle Scholar
  13. Kotb, A.: All-Optical Logic Gates using Semiconductor Optical Amplifiers. Lambert Academic Publishing, Germany (2012)Google Scholar
  14. Kotb, A.: NOR gate based on QD-SOA at 250 Gbit/s. Opt. Quantum Electron. 45, 473–480 (2013a)CrossRefGoogle Scholar
  15. Kotb, A.: 1 Tb/s high quality factor NOR gate based on quantum-dot semiconductor optical amplifier. Opt. Quantum Electron. 45, 1258–1268 (2013b)Google Scholar
  16. Kotb, A.: An OR Gate for 100 Gb/s Phase-Shift Keying Signals in Semiconductor Optical Amplifier-Based Delayed Interferometer. Aust. J. Basic & Appl. Sci. 8, 449–454 (2014)Google Scholar
  17. Kotb, A.: Ultrafast All-Optical Logic OR Gate Based on Two photon Absorption with a Semiconductor Optical Amplifier-assisted Delayed Interferometer. Korean Phys. Soc. 68, 201–205 (2016a)ADSCrossRefGoogle Scholar
  18. Kotb, A.: Simulation of Soliton All-Optical Logic XOR Gate with Semiconductor Optical Amplifier. Opt. Quant. Electron. 48(307), 1–11 (2016b)Google Scholar
  19. Kotb, A., Alamer, F.A.: Dispersion on All-Optical Logic XOR Gate Using Semiconductor Optical Amplifier. Opt. Quant. Electron. 48(327), 1–10 (2016)Google Scholar
  20. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284, 5798–5805 (2011)ADSCrossRefGoogle Scholar
  21. Kotb, A., Zoiros, K.E.: Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt. Quantum Electron. 45, 1213–1221 (2013)CrossRefGoogle Scholar
  22. Kotb, A., Zoiros, K.E.: On the design of all-optical gates based on quantum-dot semiconductor optical amplifier with effect of amplified spontaneous emission. Opt. Quantum Electron. 46, 977–989 (2014)CrossRefGoogle Scholar
  23. Kotb, A., Zoiros, K.E.: Soliton All-optical Logic AND Gate with Semiconductor Optical Amplifier-assisted Mach-Zehnder Interferometer, accepted for publication. Opt. Eng. 55, 087–109 (2016)CrossRefGoogle Scholar
  24. Mollenauer, L.F., Gordon, J.P.: Solitons in Optical Fibers: Fundamentals and Applications. Elsevier Academic Press, USA (2006)Google Scholar
  25. Mørk, J., Nielsen, M.L., Berg, T.W.: The dynamics of semiconductor optical amplifiers: modeling and applications. Opt. Photon. News 14, 42–48 (2003)ADSCrossRefGoogle Scholar
  26. Osiński, M., Buus, J.: Linewidth broadening factor in semiconductor lasers-An overview. IEEE J. Quantum Electron. 23, 9–29 (1987)ADSCrossRefGoogle Scholar
  27. Saxena, S., Wai, P.K.A., Menyuk, C.R., Chbat, M.W.: Analysis of soliton-based logic module for a ring network. Lightwave Technol. 14, 1776–1787 (1996)ADSCrossRefGoogle Scholar
  28. Talli, G., Adams, M.J.: Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments. Opt. Commun. 218, 161–166 (2003)ADSCrossRefGoogle Scholar
  29. Ueno, Y., Nakamura, S., Tajina, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing. Opt. Soc. Am. B 19, 2573–2589 (2002)ADSCrossRefGoogle Scholar
  30. Williams, G.R., Vaziri, M., Ahn, K.H., Barnett, B.C., Islam, M.N.: Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror. Opt. Lett. 20, 1671–1673 (1995)ADSCrossRefGoogle Scholar
  31. Zang, Z.: All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating. Appl. Opt. 52, 5701–5706 (2013)ADSCrossRefGoogle Scholar
  32. Zang, Z., Yang, W.: Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. Appl. Phy. 109, 103–106 (2011)CrossRefGoogle Scholar
  33. Zang, Z., Zhang, Y.: Analysis of optical switching in a Yb + 3-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl. Opt. 51, 3424–3430 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Science, Department of PhysicsFayoum UniversityFayoumEgypt

Personalised recommendations