Stimulated Raman scattering in weakly polar narrow band-gap magnetized semiconductors in the presence of hot carriers

  • V. Pal Singh
  • M. Singh


Using the hydrodynamic model of semiconductor plasmas, a detailed analytical investigation is made to study both the steady-state and transient Raman gain in a weakly polar narrow band-gap magnetized one-component semiconductor, viz. n-InSb under off-resonant laser irradiation. Using the fact that origin of stimulated Raman scattering (SRS) lies in the third-order (Raman) susceptibility (\(\chi_{R}^{(3)}\)) of the medium, we obtained an expression of the threshold pump electric field (\(E_{th}\)), the resulting gain coefficients (steady-state as well as transient \(g_{R,TR}\)) and optimum pulse duration (\(\tau_{p}\)) for the onset of SRS. The application of a strong magnetic field not only lowers \(E_{th}\) but also enhances \(g_{R,TR}\). The carrier heating by the intense pump modifies the electron collision frequency and hence the nonlinearity of the medium which in turn enhances \(g_{R,TR}\) significantly. The enhanced \(g_{TR}\) can be greatly used in the compression of scattered pulses. The results of the present investigation leads to the better understanding of SRS process in solid and gaseous plasmas and also help considerably in filling the existing gap between theory and experiments.


Stimulated Raman scattering Semiconductor plasmas Carrier heating Narrow band gap semiconductor 



One of the authors (M.S.) acknowledges Prof. P. Aghamkar, Department of Physics, Chaudhary Devi Lal University, Sirsa for useful suggestions to carry out this work.


  1. Anisimov, S.I., Khokhlov V.A.: Instabilities in Laser Matter Interaction (1995) ISBN: 9780849386602Google Scholar
  2. Beer, A.C.: Galvanometric Effects in Semiconductors: Solid State Physics, Academic Press, New York (1963)Google Scholar
  3. Brueckner, K.A., Jorna, S.: Laser-driven fusion. Rev. Mod. Phys. 46, 325–367 (1974)ADSCrossRefGoogle Scholar
  4. Callaway, J.: Quantum Theory of The Solid State, pp. 16–23. Academic Press, New York (1974)Google Scholar
  5. Conwell, E.M.: High Field Transport in Semiconductors, pp. 141–159. Academic Press, New York (1967)Google Scholar
  6. Drake, J.F., et al.: Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778–785 (1974)ADSCrossRefGoogle Scholar
  7. Forslund, D.W., et al.: Nonlinear behaviour of stimulated Brillouin and Raman scattering in laser irradiated plasmas. Phys. Rev. Lett. 30, 739–743 (1973)ADSCrossRefGoogle Scholar
  8. Ghosh, S., Dixit, S.: Stimulated Raman scattering and Raman instability of an intense helicon wave in longitudinally magnetized n-type piezoelectric semiconducting plasma. Phys. Status Solidi (B) 131, 255–265 (1985)ADSCrossRefGoogle Scholar
  9. Gibbs, H.N.: Optical Bistability: Controlling Light with Light. Academic Press, Orlando (1985)Google Scholar
  10. Hanna, D.C., et al.: Nonlinear Optics of Free Atoms and Molecules, pp. 119–123 Springer, Berlin (1979)CrossRefGoogle Scholar
  11. Kramer, S.D., et al.: Interference of third-order light mixing and second harmonic exciton generation in CuCl. Phys. Rev. B 9, 1853–1856 (1974)ADSCrossRefGoogle Scholar
  12. Kruer, M., et al.: In: Glass, A.J., Guenther, A.H. (eds.) Laser Induced Damage in Optical Materials, pp. 473–476. NBS Special Publication No. 509, Washington (1977)Google Scholar
  13. Lee, C.H.: In: Lee, C.H. (ed.) Picosecond Optoelectronic Devices, pp. 119–188. Academic, New York (1984)Google Scholar
  14. Liu, C.S., et al.: Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas. Phys. Fluids 17, 1211–1219 (1974)ADSCrossRefGoogle Scholar
  15. Loree, T.R., et al.: New lines in the UV: SRS of excimer laser wavelengths. IEEE J. Quantum Electron. 15, 337–342 (1979)ADSCrossRefGoogle Scholar
  16. Maraghechi, B., Willett, J.E.: Raman backscattering of electromagnetic extraordinary waves in a magnetized inhomogeneous plasma. J. Plasma Phys. 20, 859–865 (1978)ADSCrossRefGoogle Scholar
  17. Maraghechi, B., Willett, J.E.: Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field. J. Plasma Phys. 21, 163–172 (1979)ADSCrossRefGoogle Scholar
  18. Mayer, J.M., et al.: Optical heating in semiconductors. Phys. Rev. B 21, 1559–1568 (1980)ADSCrossRefGoogle Scholar
  19. Neogi, A., et al.: Stimulated scattering in magnetooactive semiconductors. Phys. Rev. B 47, 16590–16593 (1993)ADSCrossRefGoogle Scholar
  20. Neogi, A., Ghosh, S.: Stimulated Raman scattering in a magnetized centrosymmetric semiconductor. Phys. Rev. B 44, 13074–13077 (1991)ADSCrossRefGoogle Scholar
  21. Rothenberg, J.E., et al.: High-resolution extreme ultraviolet spectroscopy of potassium using anti-Stoke’s radiation. Opt. Lett. 6, 363–365 (1981)ADSCrossRefGoogle Scholar
  22. Seeger, K.: Semiconductor Physics, pp. 147–183. Springer, Berlin (1989)CrossRefGoogle Scholar
  23. Sen, P., Sen, P.K.: Theory of stimulated Raman and Brillouin scattering in noncentrosymmetric crystals. Phys. Rev. B 31, 1034–1040 (1985)ADSCrossRefGoogle Scholar
  24. Sen, P., Sen, P.K.: Correlation and competition between stimulated Raman and Brillouin scattering processes. Phys. Rev. B 33, 1427–1435 (1986)ADSCrossRefGoogle Scholar
  25. Sen, P.K., et al.: Raman instability in n-type piezoelectric semiconductors. Phys. Rev. B 22, 6340–6346 (1980)ADSCrossRefGoogle Scholar
  26. Singh, M., Aghamkar, P.: Coherent Brillouin scattering in non-centrosymmetric semiconductors: bound and free charge carriers contribution. J. Mod. Opt. 55, 1251–1265 (2008)CrossRefMATHGoogle Scholar
  27. Sodha, M.S., et al.: Self-Focusing of Laser Beams in Dielectrics, Plasmas and Semiconductors, pp. 55–62. Tata McGraw-Hill, New Delhi (1974)Google Scholar
  28. Sodha, M.S., et al.: Interaction of intense laser beams with plasma waves: stimulated Raman scattering. J. Appl. Phys. 47, 3518–3523 (1976)ADSCrossRefGoogle Scholar
  29. Steele, M.C., Vural, B.: Wave interactions in Solid State Plasmas, pp. 105–112. McGraw Hill, New York (1969)MATHGoogle Scholar
  30. Sutherlands, R.L.: Handbook of Nonlinear Optics. 2nd edn (revised), pp. 958–968. Dekker, New York (2003)Google Scholar
  31. Vonder Linde, D., et al.: Molecular vibrations in liquids: direct measurement of the molecular dephasing time—determination of the shape of picosecond light pulses. Phys. Rev. Lett. 26, 954–957 (1971)ADSCrossRefGoogle Scholar
  32. Wang, C.S.: In: Rabin, H., Tang, C.L. (eds.) Quantum Electronics. Vol. 1, Part A, pp. 447–472. Academic, New York (1975)Google Scholar
  33. Wherrett, B.S.: In: Wherrett, B.S., Tooley, F.P.A. (eds.) Optical Computing, pp. 1–21. SUSSP, Edinburg (1989)Google Scholar
  34. Zeldovich, B.Y., et al.: Principles of Phase Conjugation, pp. 25–65. Springer, Berlin (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsSinghania UniversityPacheri Bari, JhunjhunuIndia
  2. 2.Department of PhysicsGovernment CollegeBirohar, JhajjarIndia
  3. 3.Department of PhysicsA.S.E.T., Amity UniversityNoidaIndia

Personalised recommendations