Effect of Sn and La doping on optical and hydrophilic properties of TiO2 thin film

  • Nasrollah Najibi Ilkhechi
  • Nader Ghobadi
  • Behzad Koozegar Kaleji
  • Mahdi Mozammel


Sn and La co-doped TiO2 thin films were fabricated on surface of glass slide substrates. Co-doped titania thin films were prepared by a sol gel method using, TBT as a precursor. Morphology and crystallite size of the obtained co-doped thin films changed by changing the content of La. Accordingly, the doped titania thin films showed various water contact angles and optical band gaps. As, the optical band gap of the nanostructured doped titania thin films decreased with increasing in content of La from 3.4 to 2.32 eV. Moreover, the water contact angles changed from 69.0° to 13.5° by changing the content of La.


Sol–gel X-ray diffraction Optical properties Thin film Sn/La doped 


  1. Anera, R.M., Henriquea, A.J.L.M., Jose, R.G., Caue, R.: Deposition of TiO2 and Ag: tiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B 90, 205–212 (2009)CrossRefGoogle Scholar
  2. Choi, J., Park, H., Hoffman, M.R.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783–792 (2010)CrossRefGoogle Scholar
  3. Colon, G., Hidalgom, C., Munuera, G., Ferino, I., Cutrufellom, G., Navioj, A.: Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl. Catal. B 63, 45–59 (2006)CrossRefGoogle Scholar
  4. Cruzromera, D., Torres, G., Arevalo, J.C., Gomez, R., Aguilar, A.: Synthesis and characterization of TiO2 doping with rare earths by sol–gel method: photocatalytic activity for phenol degradation. J. Sol–Gel. Sci. Technol. 56, 219–226 (2010)CrossRefGoogle Scholar
  5. Das, C., Roy, P., Yang, M., Jha, H., Schmuki, P.: Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Nanoscale 3, 3094–3096 (2011)ADSCrossRefGoogle Scholar
  6. Hoang, S., Guo, S., Hahn, N.T., Bard, A.J., Mullins, C.B.: Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 12, 26–32 (2012)ADSCrossRefGoogle Scholar
  7. Ilkhechi, N.N., Koozegar-Kaleji, B.: Effect of Cu2 +, Si4 + and Zr4 + dopant on structural, optical and photocatalytic properties of titania nanopowders. Opt. Quant. Electron. 48, 347–355 (2016)CrossRefGoogle Scholar
  8. Ilkhechi, N.N., Koozegar-Kaleji, B., Salahi, E., Hosseinabadi, N.: Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO2 nanopowders calcined at various temperatures. J. Sol–Gel. Sci. Technol. (2015a). doi: 10.1007/s10971-015-3661-0 Google Scholar
  9. Ilkhechi, N.N., Dousi, F., Koozegar-Kaleji, B., Salahi, E.: Optical and structural properties of TiO2 nanocomposite doped by Si and Cu at high temperature. Opt. Quant. Electron. 47, 1751–1763 (2015b)CrossRefGoogle Scholar
  10. Ilkhechi, N.N., Azar, Z., Khajeh, M., Mozammel, M.: Enhanced Structural, Optical and Super-hydrophilic properties of TiO2 thin film co-doped by V and Sn. J. Mater. Sci.: Mater. Electron. (2016). doi: 10.1007/s10854-016-5147-4 Google Scholar
  11. Jinga, J., Liuc, M., Colvin, V.L., Lia, W., William, W.: Photocatalytic degradation of nitrogen-containing organic compounds over TiO2. J. Mol. Catal. A: Chem. 351, 17–28 (2011)CrossRefGoogle Scholar
  12. Koozegar Kaleji, B., Sarraf-Mamoory, R., Nakata, K., Fujishima, A.: The effect of Sn dopant on crystal structure and photocatalytic behavior of nanostructured titania thin films. J. Sol–Gel. Sci. Technol. 60, 99–107 (2011)CrossRefGoogle Scholar
  13. Liqianga, J., Xiaojun, S., Baifu, X., Baiqi, W., Weimin, C., Honggang, F.: The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 10, 3375–3382 (2004)ADSCrossRefGoogle Scholar
  14. Ochiai, T., Fujishima, A.: Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol., C 13, 247–262 (2012)CrossRefGoogle Scholar
  15. Qiu, Y., Yan, K., Deng, H., Yang, S.: Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12(1), 407–413 (2012)ADSCrossRefGoogle Scholar
  16. Ratanatawanate, C., Xiong, C.R., Balkus, K.J.: Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)CrossRefGoogle Scholar
  17. Sun, B., Tielin, S., Peng, Z., Sheng, W., Jiang, T., Liao, G.: Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Nanoscale Res. Lett. 8, 462–469 (2013)ADSCrossRefGoogle Scholar
  18. Wang, G., Linga, Y., Li, Y.: Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682–6691 (2012)ADSCrossRefGoogle Scholar
  19. Wangy, J., Luk, C., Feng, C.G.: Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2. J. Rare Earths 29, 866–871 (2011)CrossRefGoogle Scholar
  20. Xu, M., Da, P., Wu, H., Zhao, D., Zheng, G.: Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett. 12(3), 1503–1508 (2012)ADSCrossRefGoogle Scholar
  21. Yamini, S.M., Wang, H., Gibbs, Z., Pei, Y., Doua, S.X.: Snyder GJ: Chemical composition tuning in quaternary p-type Pb-chalcogenides—a promising strategy for enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 16, 1835–1840 (2014)CrossRefGoogle Scholar
  22. Yang, X.J., Wang, S., Sun, H.M., Wang, X.B., Lian, J.S.: Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans. Nonferrous Metals Soc. c 25(2), 504–509 (2015)CrossRefGoogle Scholar
  23. Yin, S., Ihara, K., Aita, Y., Komatsu, M., Sato, T.: Visible-light induced photocatalytic activity of TiO2−x A y (A = N, S) prepared by precipitation route. J. Photochem. Photobiol., A 179, 105–114 (2006)CrossRefGoogle Scholar
  24. Zhang, X., Wang, F., Huang, H., Li, H., Han, X., Liu, Y., Kang, Z.: Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale 5, 2274–2278 (2013)ADSCrossRefGoogle Scholar
  25. Zhao, Y., Liu, J., Shi, L., Yuan, S., Fang, J., Wang, Z., et al.: Solvothermal preparation of Sn4+ doped anatase TiO2 nanocrystals from peroxo-metal-complex and their photocatalytic activity. Appl. Catal. B 103(3), 436–443 (2011)CrossRefGoogle Scholar
  26. Zhou, M.H., Yu, J.G., Cheng, B.: Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. B 137, 1838–1847 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran
  2. 2.Department of Physics, Faculty of ScienceMalayer UniversityMalayerIran
  3. 3.Department of Materials Engineering, Faculty of EngineeringMalayer UniversityMalayerIran

Personalised recommendations