Comparative study of modulation and coding schemes for coherent indoor optical wireless systems

  • Vassilis Dalakas
  • Thomas Kamalakis


Coherent optical wireless systems can be used to realize ultra high data rate links in home/office or data center networks. When designing such a system, it is important to keep the laser power as low as possible due to both eye-safety concerns and energy efficiency requirements. In this paper, we show how the choice of both modulation and coding schemes affects the required laser power and the spectral efficiency of the system. Common multilevel modulation schemes are examined, including M-ary amplitude and phase shift keying, differential phase shift keying and quadrature amplitude modulation. We also consider convolutional and low-density parity check coding schemes. This paper shows that a spectrally efficient multi-gigabit-per-second connection can be sustained over typical indoor distances and a wide coverage area, without exceeding Class-1 laser power specifications, provided that an appropriate modulation and coding scheme is selected. Coherent optical wireless systems therefore constitute a technology of choice for future ultra-broadband green local area network implementations.


Phase shift keying Quadrature amplitude modulation Coherent optical Transmission power Eye-safety 



The research reported in this paper was fully supported by the “ARISTEIA” Action (“COWS” project) of the “Operational programme Education and Life Long Learning” and is co-funded by the European Social Fund (ESF) and the Greek state.


  1. Chen, C., Zhong, W.D., Li, X., Wu, D.: MDPSK-based nonequalization OFDM for coherent free-space optical communication. IEEE Photon. Technol. Lett. 26(16), 1617–1620 (2014). doi: 10.1109/LPT.2014.2329133 ADSCrossRefGoogle Scholar
  2. ETSI EN 302 307 V1.2.1, Digital Video Broadcasting (DVB): Second generation framing structure, channel coding and modulation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2) (2009).
  3. Kamalakis, T., Sphicopoulos, T., Muhammad, S.S., Leitgeb, E.: Estimation of the power scintillation probability density function in free-space optical links by use of multicanonical Monte Carlo sampling. Opt. Lett. 31(21), 3077–3079 (2006). doi: 10.1364/OL.31.003077 ADSCrossRefGoogle Scholar
  4. Kamalakis, T., Kanakis, P., Bogris, A., Dalakas, V., Dede, G.: Designing coherent optical wireless systems for high speed indoor telecom applications. Opt. Commun. 358, 35–44 (2016). doi: 10.1016/j.optcom.2015.09.014 ADSCrossRefGoogle Scholar
  5. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. Lam, C.F.: The road to scalable 1Gb/s FTTH access networks. In: 2011 37th European Conference and Exhibition on Optical Communication (ECOC), pp. 1–3. Geneva (2011)Google Scholar
  7. Ly-Gagnon, D., Tsukamoto, S., Katoh, K., Kikuchi, K.: Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J. Lightw. Technol. 24(1), 12–21 (2006). doi: 10.1109/JLT.2005.860477 ADSCrossRefGoogle Scholar
  8. O’Brien, D.C., Faulkner, G., Minh, H.L., Bouchet, O., El Tabach, M., Wolf, M., Walewski, J., Randel, S., Nerreter, S., Franke, M., Langer, K.D., Grubor, J., Kamalakis, T.: Home access networks using optical wireless transmission. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, 2008. pp. 1–5 (2008). doi: 10.1109/PIMRC.2008.4699864
  9. Papaharalabos, S., Mathiopoulos, P.T., Masera, G., Martina, M.: On optimal and near-optimal turbo decoding using generalized \({\max }^*\) operator. IEEE Commun. Lett. 13(7), 522–524 (2009). doi: 10.1109/LCOMM.2009.090537 CrossRefGoogle Scholar
  10. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)MATHGoogle Scholar
  11. Shieh, W., Yi, X., Ma, Y., Yang, Q.: Coherent optical OFDM: has its time come? [Invited]. J. Opt. Netw. 7(3), 234–255 (2008). doi: 10.1364/JON.7.000234 CrossRefGoogle Scholar
  12. Street, A., Stavrinou, P., O’brien, D., Edwards, D.: Indoor optical wireless systems a review. Opt. Quantum Electron. 29(3), 349–378 (1997). doi: 10.1023/A:1018530828084 CrossRefGoogle Scholar
  13. Vahdat, A., Al-Fares, M., Farrington, N., Mysore, R., Porter, G., Radhakrishnan, S.: Scale-out networking in the data center. IEEE Micro 30(4), 29–41 (2010). doi: 10.1109/MM.2010.72 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Informatics and TelematicsHarokopio University of AthensAthensGreece

Personalised recommendations