Advertisement

Fibre optic track vibration monitoring system

  • Stanislav Kepak
  • Jakub Cubik
  • Petr Zavodny
  • Petr Siska
  • Alan Davidson
  • Ivan Glesk
  • Vladimir Vasinek
Article

Abstract

Track monitoring systems are a fundamental part of railroad safety. With the electrification and development of train traction control electronics, levels of electromagnetic interference (EMI) close to railroad monitoring systems are reaching critical levels. Unreliable track safety and fault monitoring systems could affect the efficient and safe functioning of railroads and therefore strict demands must be placed on track monitoring systems to ensure electromagnetic compatibility. The Prague subway system is not an exception. An alternative track vibration monitoring system has been proposed, demonstrated and tested along a single railway track in the Prague subway system. Two passive detection systems placed 50 m and 1.3 km away from the control room were used to measure tunnel vibrations triggered by passing trains free from the effect of any unrelated EMI existing in the subway tunnel. Fibre optic based systems immune to EMI can offer an efficient solution to both track and train monitoring.

Keywords

Vibration measurements Track monitoring Fibre optic sensor EMI-free 

Notes

Acknowledgments

The research described in this article could be carried out thanks to the active support of the Ministry of Education, Youth and Sports of the Czech Republic through Grant project no. CZ.1.07/2.3.00/20.0217 within the frame of the operation programme Education for competitiveness financed by the European Structural Funds and from the state budget of the Czech Republic. This article was also supported by project Technology Agency of the Czech Republic TA03020439 and TA04021263. The research has been partially supported by the projects no. SP2016/149 and VI20152020008.

References

  1. Butter, C.D., Hocker, G.B.: Fiber optics strain gauge. Appl. Opt. 17(18), 2867–2869 (1978). doi: 10.1364/AO.17.002867 ADSCrossRefGoogle Scholar
  2. Cubik, J., Kepak, S., Doricak, J., Vasinek, V., Jaros, J., Liner, A., Papes, M., Fajkus, M.: The usability analysis of different standard single-mode optical fibers and its installation methods for the interferometric measurements. Adv. Electr. Electron. Eng. 11(6), 535–542 (2013). doi: 10.15598/aeee.v11i6.885 Google Scholar
  3. Giallorenzi, T., Bucaro, J., Dandridge, A., Sigel, G., Cole, J., Rashleigh, S., Priest, R.: Optical fiber sensor technology. IEEE J. Quantum Electron. 18(4), 626–665 (1982). doi: 10.1109/JQE.1982.1071566 ADSCrossRefGoogle Scholar
  4. Kepak, S., Cubik, J., Doricak, J., Vasinek, V., Siska, P., Liner, A., Papes, M.: The arms arrangement influence on the sensitivity of Mach-Zehnder fiber optic interferometer. Proc. SPIE Int. Soc. Opt. Eng. (2013). doi: 10.1117/12.2017305 Google Scholar
  5. Kumagai, T., Ohnuki, W., Hayashiya, H., Nishida, K.: Interferometric fiber-optic electric current sensor for railway power systems. IEEJ Trans. Sens. Micromach. 133(2), 42–47 (2013). doi: 10.1541/ieejsms.133.42 CrossRefGoogle Scholar
  6. Minardo, A., Porcaro, G., Giannetta, D., Bernini, R., Zeni, L.: Railway traffic monitoring using Brillouin distributed sensors. Proc. SPIE Int. Soc. Opt. Eng. (2013). doi: 10.1117/12.2025991 Google Scholar
  7. Parker, S.: Track Design Handbook for Light Rail Transit, second edn. Transportation Research Board, Washington (2012)Google Scholar
  8. Peng, F., Duan, N., Rao, Y., Li, J.: Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014). doi: 10.1109/LPT.2014.2346760 ADSCrossRefGoogle Scholar
  9. Sokoiowski, K., Domanski, A.W., Wolinski, T.R.: Intensity-based fiber optic bend sensor for potential railway application. Proc. SPIE Int. Soc. Opt. Eng. 5484, 417–420 (2004). doi: 10.1117/12.568927 ADSGoogle Scholar
  10. Tam, H., Liu, S., Ho, S., Ho, T.: Fiber bragg grating sensors for railway systems. In: Cusano, A., Cutolo, A., Albert, J. (eds.) Fiber Bragg Grating Sensors: Recent Advancements. Industrial Applications and Market Exploitation. Bentham Science Publishers, Sharjah (2011). doi: 10.2174/978160805084011101010197 Google Scholar
  11. Thompson, D.: Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Elsevier, Amsterdam (2009)Google Scholar
  12. Udd, E., Spillman, W.B.: Fiber Optic Sensors: An Introduction for Engineers and Scientists, Second edn. Wiley, New Jersey (2011). doi: 10.1002/9781118014103 CrossRefGoogle Scholar
  13. Veeser, L.R., Forman, P.R., Rodriguez, P.J.: Lensless magneto-optic speed sensor. United States Patent, 1998Google Scholar
  14. Vér, I.L., Ventres, C.S., Myles, M.M.: Wheel/rail noise-part III: impact noise generation by wheel and rail discontinuities. J. Sound Vib. 46(3), 395–417 (1976). doi: 10.1016/0022-460X(76)90863-4(1976) ADSCrossRefGoogle Scholar
  15. Yuen, K.K.: Novel application of a fibre optic-based train weigh-in-motion system in railway. HKIE Trans. 21(4), 272–280 (2014). doi: 10.1080/1023697X.2014.970752 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stanislav Kepak
    • 1
  • Jakub Cubik
    • 1
  • Petr Zavodny
    • 1
  • Petr Siska
    • 1
  • Alan Davidson
    • 2
  • Ivan Glesk
    • 2
  • Vladimir Vasinek
    • 1
  1. 1.Department of Telecommunications, Faculty of Electrical Engineering and Computer ScienceVSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Department of Electronic and Electrical Engineering, Faculty of EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations