Advertisement

Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids

  • Jelena D. Pajović
  • Radovan Dojčilović
  • Dušan K. Božanić
  • Vesna V. Vodnik
  • Suzana Dimitrijević-Branković
  • Slavka Kaščaková
  • Matthieu Réfrégiers
  • Milica Markelić
  • Vladimir Djoković
Article
Part of the following topical collections:
  1. Advances in the Science of Light

Abstract

Fluorescent nanostructures were prepared by functionalization of gold nanoparticles with riboflavin molecules and used as probes for synchrotron radiation deep ultraviolet (SR-DUV) fluorescence imaging of gluteraldehyde-fixed Candida albicans cells. The nanoparticles were characterized by transmission electron microscopy (TEM) and optical spectroscopy techniques. The TEM analysis showed that the nanostructures were 6 nm in diameter, while the results of the fluorescence spectroscopies confirmed the photoluminescence of the nanoparticles. The SR-DUV imaging showed that it was possible to distinguish the fluorescence of the nanoparticles from the autofluorescence of the cells, as well as that the local maxima of the signal pertaining to the fluorescence of gold-riboflavin nanostructures were mostly positioned on the surfaces of the C. albicans cells of spherical morphology.

Keywords

Gold nanoparticles Riboflavin Functionalization Candida albicans Fluorescence imaging 

Notes

Acknowledgments

Deep UV imaging of C. albicans cells was performed at the DISCO beamline of Synchrotron SOLEIL (France) as a part of the research projects No. 20120810 and 20131218. We acknowledge with gratitude the TNA support of the Synchrotron SOLEIL. The authors kindly acknowledge the help of Dr. Valerie Rouam (SOLEIL) for the help in the preparation of the samples for the fluorescence imaging. This study was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia (Projects No. 172056, 45020, and 171029).

References

  1. Arboleda, A., Miller, D., Cabot, F., Taneja, M., Aguilar, M.C., Alawa, K., Amescua, G., Yoo, S.H., Parel, J.-M.: Assessment of rose bengal versus riboflavin photodynamic therapy for inhibition of fungal keratitis isolates. Am. J. Ophthalmol. 158, 64–70 (2014)CrossRefGoogle Scholar
  2. Bhatria, R., Salas, E., Hug, W., Reid, R., Lane, A., Edwards, K., Nealson, K.: Label-free bacterial imaging with deep-UV-laser-induced native fluorescence. Appl. Environ. Microbiol. 76, 7231–7237 (2010)CrossRefGoogle Scholar
  3. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  4. Božanić, D.K., Ivković, M., Bibić, N., Hegewald, J., Pionteck, J., Žikić, R., Djoković, V.: \(\text{ PS-NH }_2\) + PMMA-COOH blend: a promising substrate material for the deposition of densely packed gold nanoparticles. Phys. Status Solidi RRL 3–4, 85–87 (2010)Google Scholar
  5. Chau, L.K., Chang, H.T.: From Bioimaging to Biosensors: Noble Metal Nanoparticles in Biodetection. Pan Stanford Publishing, Singapore (2013)Google Scholar
  6. Cho, E.C., Zhang, Q., Xia, Y.: The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6, 385–391 (2011)ADSCrossRefGoogle Scholar
  7. Djoković, V., Krsmanović, R., Božanić, D.K., McPherson, M., Van Tendeloo, G., Sreekumari Nair, P., Georges, M.K., Radhakrishnan, T.: Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer. Colloids Surf. B 73, 30–35 (2009)CrossRefGoogle Scholar
  8. Dojčilović, R., Pajović, J., Božanić, D.K., Vodnik, V.V., Dimitrijević-Branković, S., Milosavljević, A.R., Kaščáková, S., Réfrégiers, M., Djoković, V.: A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. Analyst 141, 1988–1996 (2016)ADSCrossRefGoogle Scholar
  9. Edelstein, A., Amodaj, N., Hoover, K., Vale, R., Stuurman, N.: Computer Control of Microscopes Using \(\mu\)Manager. Wiley, Hoboken, NJ (2010)Google Scholar
  10. Edwards, A.M., Silva, E., Jofré, B., Becker, M.I., De Ioannes, A.E.: Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. J. Photochem. Photobiol. B: Biol. 24, 179–186 (1994)CrossRefGoogle Scholar
  11. Giuliani, A., Jamme, F., Rouam, V., Wien, F., Giorgetta, J.L., Lagarde, B., Chubar, O., Bac, S., Yao, I., Rey, S., Herbeaux, C., Marlats, J.L., Zerbib, D., Polack, F., Réfrégiers, M.: DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. J. Synchrotron Radiat. 16, 835–841 (2009)CrossRefGoogle Scholar
  12. Jamme, F., Villette, S., Giuliani, A., Rouam, V., Wien, F., Lagarde, B., Réfrégiers, M.: Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues. Microsc. Microanal. 16, 507–514 (2010)ADSCrossRefGoogle Scholar
  13. Jamme, F., Kaščáková, S., Villette, S., Allouche, F., Pallu, S., Rouam, V., Réfrégiers, M.: Deep UV autofluorescence microscopy for cell biology and tissue histology. Biol. Cell 105, 277–288 (2013)CrossRefGoogle Scholar
  14. Lee, K., Choi, S., Yang, C., Wu, H.-C., Yu, J.: Autofluorescence generation and elimination: a lesson from glutaraldehyde. Chem. Commun. 49, 3028–3030 (2013)CrossRefGoogle Scholar
  15. Louis, C., Pluchery, O.: Gold nanoparticles for physics, biology and chemistry. Imperial College Press, London (2012)CrossRefGoogle Scholar
  16. Pagés, J.M., Kaščáková, S., Maigre, L., Allam, A., Alimi, M., Chevalier, J., Galardon, E., Réfrégiers, M., Artaud, I.: New Peptide-based antimicrobials for tackling drug resistance in bacteria: single cell fluorescence imaging. ACS Med. Chem. Lett. 4, 556–559 (2013)CrossRefGoogle Scholar
  17. Pajović, J.D., Dojčilović, R., Božanić, D.K., Kaščáková, S., Réfrégiers, M., Dimitrijević-Branković, S., Vodnik, V.V., Milosavljević, A.R., Piscopiello, E., Luyt, A.S., Djoković, V.: Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. Colloids Surf. B 136, 742–750 (2015)CrossRefGoogle Scholar
  18. Rana, S., Bajaj, A., Mout, R., Rotello, V.: Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 64, 200–216 (2012)CrossRefGoogle Scholar
  19. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jelena D. Pajović
    • 1
  • Radovan Dojčilović
    • 2
  • Dušan K. Božanić
    • 2
  • Vesna V. Vodnik
    • 2
  • Suzana Dimitrijević-Branković
    • 3
  • Slavka Kaščaková
    • 4
    • 5
  • Matthieu Réfrégiers
    • 6
  • Milica Markelić
    • 7
  • Vladimir Djoković
    • 2
  1. 1.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Bioengineering and Biotechnology, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Inserm U785VillejuifFrance
  5. 5.Univ. Paris-Sud 11, UMR-S785VillejuifFrance
  6. 6.DISCO beamline, Synchrotron SOLEILGif sur YvetteFrance
  7. 7.Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations