Nonlinear optical properties of new synthesized conjugated organic molecules based on pyrimidine and oxazepine

  • Z. Sofiani
  • S. Khannyra
  • A. Boucetta
  • M. ElJouad
  • K. Bouchouit
  • H. Serrar
  • S. Boukhris
  • A. Souizi
  • A. Migalska-Zalas
Part of the following topical collections:
  1. Advanced Materials for Photonics and Electronics


The third order nonlinear optical properties were reported for a new synthesized molecules based on triazepine and thianine, using the third harmonic generation (THG) technique. After synthesis, the powders were deposited on glass substrates using dip coating technique in order get thin films. These thin films were characterized, by different techniques, we mention the absorption and X-ray diffraction. The measurements of third order nonlinear optical susceptibilities were performed on these thin films, using the THG technique at 1064 nm. These investigations were completed by theoretical studies, using energy levels theory HOMO–LUMO and the second order hyperpolarizabilities (γ) results. Good agreement was obtained between the theoretical and experimental results.


Conjugated organic molecules Nonlinear optics THG Second order hyperpolarizabilities 



This work was supported by “Académie Hassan II des Sciences et Techniques”, Rabat, Morocco. Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (, Grant No. 282.


  1. Achelle, S.: Pyrimidine ring as building block for the synthesis of functionalized π-conjugated materials. Curr. Org. Synth. 9, 163–187 (2012)CrossRefGoogle Scholar
  2. Achelle, S., Baudequin, C.: Recent advances in pyrimidine derivatives as luminescent, photovoltaic and ono-linear optical materials. Targets Heterocycl. Syst. 17, 1–34 (2013)Google Scholar
  3. Achelle, S., Kahlal, S., Barsella, A., Saillard, J.-Y., Che, X., et al.: Improvement of the quadratic non-linear optical properties of pyrimidine chromophores by N-methylation and tungsten pentacarbonyl complexation. Dyes Pigments 113, 562–570 (2015)CrossRefGoogle Scholar
  4. Ahluwalia, V.K., Batla, R., Khuranaand, A., Kumar, R.: Synthesis of 1,3-diaryl-1,2,3,4-tetrahydro-7,7-diethyl-5-methyl-4-oxo-2-thioxo- 7H- pyrano(2,3-d)pyrimidines. Indian J. Chem. 29B, 1141 (1990)Google Scholar
  5. Apostoluk, A., Chapron, D., Gadret, G., Sahraoui, B., Nunzi, J.-M., Fiorini-Debuisschert, C., Raimond, P.: Quasi-phase-matched gratings printed by all-optical poling in polymer films. Opt. Lett. 27(22), 2028–2030 (2002)ADSCrossRefGoogle Scholar
  6. Azarifar, D., Nejat-Yami, R., Sameriand, F., Akrami, A.: Ultrasonic-promoted one-pot synthesis of 4H-chromenes, pyrano[2,3- d]pyrimidines, and 4H-pyrano[2,3-c]pyrazoles. Lett. Org. Chem. 9(6), 435–439 (2012)CrossRefGoogle Scholar
  7. Becke, D.: Density-functional thermochemistry. III, the role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)ADSCrossRefGoogle Scholar
  8. Bogaard, M.P., Orr, B.J., Buckingham, A.D. (Ed.): MTP International Review of Science, vol. 2, pp. 149–194. Butterworths, London (1975)Google Scholar
  9. Brown, R., Pomp, A., Hart, C.M., Deleeuw, D.M.: Logic gates made from polymer transistors and their use in ring oscillators. Science 270, 972–974 (1995)ADSCrossRefGoogle Scholar
  10. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Burn, P.L., Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)ADSCrossRefGoogle Scholar
  11. Cave, R.J., Burke, K., Castner, E.W.: Theoretical investigation of the ground and excited states of coumarin 151 and coumarin 120. J. Phys. Chem. A 106, 9294–9305 (2002)CrossRefGoogle Scholar
  12. Derkowska, B., Mulatier, J.C., Fuks, I., Sahraoui, B., Nguyen Phu, X., Andraud, C.: Third-order optical nonlinearities in new octupolar molecules and their dipolar subunits. JOSA B 18(5), 610–616 (2001)ADSCrossRefGoogle Scholar
  13. Devi, I., Kumar, B.S.D., Bhuyan, P.J.: A novel three-component one-pot synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines using microwave heating in the solid state. Tetrahedron Lett. 44(45), 8307–8310 (2003)CrossRefGoogle Scholar
  14. Fuuya, S., Ohtaki, T.: Pyrido[2,3-d]pyrimidines and their uses as anatagonists, Eur. Patent, 608565, Chem. Abstr. 121, 205395, (1994)Google Scholar
  15. Gao, S.J., Tsai, C.H., Tsengand, C., Yao, C.F.: Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron 64(38), 9143–9149 (2008)CrossRefGoogle Scholar
  16. Gaussian 09: Revision D.01, Gaussian, Inc., Wallingford CT, Official Gaussian 09 Literature Citation (2009)Google Scholar
  17. Grivaky, E.M., Lee, S., Siyal, C.W., Duchand, D.S., Nichol, C.A.: Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. J. Med. Chem. 23(3), 327–329 (1980)CrossRefGoogle Scholar
  18. Heber, D., Heersand, C., Ravens, U.: Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: compounds with positive inotropic activity. Die Pharm. 48(7), 537–541 (1993)Google Scholar
  19. Khan, A.T., Lal, M., Aliand, S., Khan, M.M.: One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett. 52(41), 5327–5332 (2011)CrossRefGoogle Scholar
  20. Khazaei, A., Ranjbaran, A., Abbasi, F., Khazaei, M., Reza Moosavi-Zare, A.: Synthesis, characterization and application of ZnFe2O4 nanoparticles as a heterogeneous ditopic catalyst for the synthesis of pyrano[2,3-d] pyrimidines. RSC Adv. 5, 13643–13647 (2015)CrossRefGoogle Scholar
  21. Khurana, J.M., Vij, K.: Nickel nanoparticles as semiheterogeneous catalyst for one-pot, three-component synthesis of 2-amino-4H-pyrans and pyran annulated heterocyclic moieties. Synth. Commun. 43(17), 2294–2304 (2013)CrossRefGoogle Scholar
  22. Khurana, J.M., Nandand, B., Saluja, P.: DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano-[4,3-b] pyranes, 2-amino-4Hbenzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron 66(30), 5637–5641 (2010)CrossRefGoogle Scholar
  23. Kolev, T., Kityk, I.V., Ebothe, J., Sahraoui, B.: Intrinsic hyperpolarizability of 3-dicyanomethylene-5,5-dimethyl-1-[2-(4-hydroxyphenyl)ethenyl]-cyclohexene nanocrystallites incorporated into the photopolymer matrices. Chem. Phys. Lett. 443(4–6), 309–312 (2007)ADSCrossRefGoogle Scholar
  24. Kraft, A., Grimsdale, A.C., Holmes, A.B.: Electroluminescent conjugated polymers—seeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)CrossRefGoogle Scholar
  25. Li, L., Ge, J., Wu, H., Xu, Q.H., Yao, S.Q.: Organelle-specific detection of phosphatase activities with two-photon fluorogenic probes in cells and tissues. J. Am. Chem. Soc. 134, 12157–12167 (2012)CrossRefGoogle Scholar
  26. Lian, X.-Z., Huang, Y., Li, Y.-Q., Zheng, W.-J.: A green synthesis of tetrahydrobenzo[b]pyran derivatives through three-component condensation using N-methylimidazole as organocatalyst. Monatsh. Chem. 139(2), 129–131 (2008)CrossRefGoogle Scholar
  27. Liu, B., Hu, X.L., Liu, J., Zhao, Y.D., Huang, Z.L.: Synthesis and photophysical properties of novel pyrimidine-based two-photon absorption chromophores. Tetrahedron Lett. 48, 5958–5962 (2007)CrossRefGoogle Scholar
  28. Migalska-Zalas, A., Sofiani, Z., Sahraoui, B., Kityk, I.V., Tkaczyk, S., Yuvshenko, V., Fillaut, J.-L., Perruchon, J., Muller, T.J.J.: χ(2) Grating in Ru Derivative Chromophores Incorporated within the PMMA Polymer Matrices. J. Phys. Chem. B 108(39), 14942–14947 (2004)CrossRefGoogle Scholar
  29. Sahraoui, B., Nguyen Phu, X., Sallé, M., Gorgues, A.: Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N′-dimethylaniline tetrathiafulvalene derivatives. Opt. Lett. 23(23), 1811–1813 (1998)ADSCrossRefGoogle Scholar
  30. Sheats, J.R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D., Stocking, A.: Effect of heat extraction by metal lines and two sided cooling on temperatures in organic light emitting diode based devices. Science 273, 884–888 (1996)ADSCrossRefGoogle Scholar
  31. Shen, J., Cheng, W.-D., Wu, D.-S., Li, X.-D., Lan, Y.-Z., Zhang, H., Gong, Y.-J., Li, F.-F., Huang, S.-P.: Modeling of configurations and third-order nonlinear optical properties of methyl silsesquioxanes. J. Chem. Phys. 122, 20470–204709 (2005)Google Scholar
  32. Sofiani, Z., Derkowska, B., Dalasiński, P., Wojdyła, M., Dabos-Seignon, S., AlaouiLamrani, M., Dghoughi, L., Bała, W., Addou, M., Sahraoui, B.: Optical properties of ZnO and ZnO: Ce layers grown by spray pyrolysis. Opt. Commun. 267(2), 433–439 (2006)ADSCrossRefGoogle Scholar
  33. Tessler, N., Denton, G.J., Friend, R.H.: Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996)ADSCrossRefGoogle Scholar
  34. Yu, G., Heeger, A.J.: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995)ADSCrossRefGoogle Scholar
  35. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Z. Sofiani
    • 1
  • S. Khannyra
    • 1
  • A. Boucetta
    • 1
  • M. ElJouad
    • 2
  • K. Bouchouit
    • 3
  • H. Serrar
    • 4
  • S. Boukhris
    • 4
  • A. Souizi
    • 4
  • A. Migalska-Zalas
    • 5
  1. 1.LOPCM Laboratory, Faculty of ScienceIbn Tofail UniversityKenitraMorocco
  2. 2.Ecole Nationale des Sciences Appliquées (ENSAJ)Université Chouaïb DoukkaliEl JadidaMorocco
  3. 3.Chemistry Department, Faculty of Exact Sciences and InformaticsUniversity of JijelJijelAlgeria
  4. 4.Laboratoire de Synthese Organique, Organomtallique et Théorique, Faculty of SciencesIbn Tofail UniversityKenitraMorocco
  5. 5.Faculty of Mathematics and Natural Sciences, Institute of PhysicsJ. Dlugosz Academy of CzestochowaCzestochowaPoland

Personalised recommendations