Electrical-optical analysis of photonic crystals GaN-based high power light emitting diodes

  • Meng Liu
  • Kang Li
  • Fan-min Kong
  • Jia Zhao
  • Qing-an Ding
  • Ming-yu Zhang


Although photonic crystals (PhCs) have been used to enhance the light extraction efficiency (LEE) of light emitting diodes (LEDs) in a lot of researches, the effects of PhCs on the electrical and optical characteristics of GaN-based high power LEDs have been rarely analyzed simultaneously. Herein, the 3D finite-element method (FEM) was employed to investigate the current density distribution in the active layer of LEDs while the LEE was calculated based on the finite-difference time-domain method. Then the influences of several parameters, including the radius, the filling factor, and the etching depth of PhCs on the current density distribution and external quantum efficiency (EQE) of LEDs were examined. It was found that the configurations of PhCs had a significant influence on the electrical and optical performances of LEDs. With the optimized parameters, a 62 % enhancement of EQE and more uniform current density distribution have been obtained comparing to those of LEDs with planar ITO. These analysis results can facilitate the identification of the design rules for high power, high efficiency LEDs.


External quantum efficiency (EQE) Current density distribution Photonic crystals (PhCs) Light emitting diodes (LEDs) 



This work is supported by the National Natural Science Foundation of China (61077043, 61475084, 61327808) and the Fundamental Research Funds of Shandong University (2014JC032).


  1. Benisty, H., Stanley, R., Mayer, M.: Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A: 15, 1192–1201 (1998)ADSCrossRefGoogle Scholar
  2. Bogdanov, M.V., Bulashevich, K.A., Khokhlev, O.V., Evstratov, I.Y., Ramm, M.S., Karpov, S.Y.: Current crowding effect on light extraction efficiency of thin-film LEDs. Phys. Status Solidi (c) 7(7–8), 2124–2126 (2010). doi: 10.1002/pssc.200983415 ADSCrossRefGoogle Scholar
  3. Cao, B., Li, S., Hu, R., Zhou, S., Sun, Y., Gan, Z., Liu, S.: Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes. Opt. Express 21(21), 25381–25388 (2013). doi: 10.1364/oe.21.025381 ADSCrossRefGoogle Scholar
  4. Chen, J.-C., Sheu, G.-J., Hwu, F.-S., Chen, H.-I., Sheu, J.-K., Lee, T.-X., Sun, C.-C.: Electrical-optical analysis of a GaN_sapphire LED chip by considering the resistivity of the current-spreading layer. Opt. Rev. 16(2), 213–215 (2009)CrossRefGoogle Scholar
  5. Cho, J., Schubert, E.F., Kim, J.K.: Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photon. Rev. 7(3), 408–421 (2013). doi: 10.1002/lpor.201200025 CrossRefGoogle Scholar
  6. Crawford, M.H.: LEDs for solid-state lighting-performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009)MathSciNetCrossRefGoogle Scholar
  7. David, A., Fujii, T., Sharma, R., McGroddy, K., Nakamura, S., DenBaars, S.P., Hu, E.L., Weisbuch, C., Benisty, H.: Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution. Appl. Phys. Lett. 88(6), 061124-1–061124-3 (2006). doi: 10.1063/1.2171475 ADSCrossRefGoogle Scholar
  8. Ding, Q.A., Li, K., Kong, F., Chen, X., Zhao, J.: Improving the vertical light-extraction efficiency of GaN-based thin-film flip-chip LEDs with p-side deep-hole photonic crystals. J. Disp. Technol. 10(11), 909–916 (2014)ADSCrossRefGoogle Scholar
  9. Gao, H., Li, K., Kong, F.-M., Chen, X.-L., Zhang, Z.-M.: Improving light extraction efficiency of GaN-based LEDs by AlxGa1-xN confining layer and embedded photonic crystals. IEEE J. Sel. Top. Quantum Electron. 18, 1650–1660 (2011)CrossRefGoogle Scholar
  10. Guo, X., Schubert, E.F.: Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Appl. Phys. Lett. 78(21), 3337 (2001). doi: 10.1063/1.1372359 ADSCrossRefGoogle Scholar
  11. Hsu, C.-W., Lee, Y.-C., Chen, H.-L., Chou, Y.-F.: Optimizing textured structures possessing both optical gradient and diffraction properties to increase the extraction efficiency of light-emitting diodes. Photon. Nanostruct. Fundam. Appl. 10(4), 523–533 (2012). doi: 10.1016/j.photonics.2012.04.005 ADSCrossRefGoogle Scholar
  12. Huang, S., Wu, H., Fan, B., Zhang, B., Wang, G.: A chip-level electrothermal-coupled design model for high-power light-emitting diodes. J. Appl. Phys. 107(5), 054509-1–054509-8 (2010). doi: 10.1063/1.3311564 ADSGoogle Scholar
  13. Hwang, S., Shim, J.: A method for current spreading analysis and electrode pattern design in light-emitting diodes. IEEE Trans. Electron. Dev. 55(5), 1123–1128 (2008)ADSCrossRefGoogle Scholar
  14. Köhler, U., As, D.J., Schöttker, B., Frey, T., Lischka, K., Scheiner, J., Shokhovets, S., Goldhahn, R.: Optical constants of cubic GaN in the energy range of 1.5–3.7 eV. J. Appl. Phys. 85(1), 404–407 (1999)ADSCrossRefGoogle Scholar
  15. Leem, D.-S., Lee, T., Seong, T.-Y.: Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching. Solid State Electron. 51(5), 793–796 (2007). doi: 10.1016/j.sse.2007.02.038 ADSCrossRefGoogle Scholar
  16. Li, C.-K., Rosmeulen, M., Simoen, E., Wu, Y.-R.: Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs. IEEE Trans. Electron Devices 61(2), 511–517 (2014)ADSCrossRefGoogle Scholar
  17. Liou, J.-K., Chen, C.-C., Chou, P.-C., Tsai, T.-Y., Cheng, S.-Y., Liu, W.-C.: Improved current spreading performance of a GaN-based light-emitting diode with a stair-like ITO layer. Solid State Electron. 99, 21–24 (2014). doi: 10.1016/j.sse.2014.05.002 ADSCrossRefGoogle Scholar
  18. Liu, Y.J., Huang, C.C., Chen, T.Y., Hsu, C.S., Liou, J.K., Tsai, T.Y., Liu, W.C.: Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode. Opt. Express 19(15), 14662–14670 (2011)ADSCrossRefGoogle Scholar
  19. Matioli, E.: Embedded photonic crystals for high-efficiency gan-based optoelectronic devices. PhD thesis, Materials Department, University of Califonia, Santa Barbara (2010)Google Scholar
  20. Matioli, E., Weisbuch, C.: Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs. J. Phys. D Appl. Phys. 43(35), 354005-1–354005-22 (2010). doi: 10.1088/0022-3727/43/35/354005 CrossRefGoogle Scholar
  21. Morkoç, H., Shim, J.-I., Yun, J., Kim, H., Litton, C.W., Chyi, J.-I., Nanishi, Y., Piprek, J., Yoon, E.: Current spreading and its related issues in GaN-based light emitting diodes. SPIE OPTO: integrated optoelectronic devices. Int. Soc. Opt. Photon. 7216, 72160V-72161–72160V-72169 (2009). doi: 10.1117/12.808393 Google Scholar
  22. Nakamura, S., Krames, M.R.: History of gallium–nitride-based light-emitting diodes for illumination. Proc. IEEE 101(10), 2211–2220 (2013)CrossRefGoogle Scholar
  23. Oh, S., Su, P.-C., Yoon, Y.-J., Cho, S., Oh, J.-H., Seong, T.-Y., Kim, K.-K.: Nano-patterned dual-layer ITO electrode of high brightness blue light emitting diodes using maskless wet etching. Opt. Express 21(S6), A970 (2013). doi: 10.1364/oe.21.00a970 ADSCrossRefGoogle Scholar
  24. Pearton, S.J., Zolper, J.C., Shul, R.J., Ren, F.: GaN: processing, defects, and devices. J. Appl. Phys. 86(1), 1–78 (1999). doi: 10.1063/1.371145 ADSCrossRefGoogle Scholar
  25. Pimputkar, S., Speck, J.S., DenBaars, S.P., Nakamura, S.: Prospects for LED lighting. Nat. Photon. 3(4), 180–182 (2009)ADSCrossRefGoogle Scholar
  26. Ryu, H.-Y., Shim, J.-I.: Effect of current spreading on the efficiency droop of InGaN light-emitting diodes. Opt. Express 19(4), 2886–2894 (2011)ADSCrossRefGoogle Scholar
  27. Ryu, H.-Y., Kim, H.-S., Shim, J.-I.: Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl. Phys. Lett. 95(8), 081114-1–081114-3 (2009). doi: 10.1063/1.3216578 ADSCrossRefGoogle Scholar
  28. Sacks, Z.S., Kingsland, D.M., Lee, R., Lee, J.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antenn. Propag. 43, 1460–1463 (1995)ADSCrossRefGoogle Scholar
  29. Synowicki, R.A.: Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 313, 394–397 (1998)ADSCrossRefGoogle Scholar
  30. Wang, P., Gan, Z., Liu, S.: Improved light extraction of GaN-based light-emitting diodes with surface-patterned ITO. Opt. Laser Technol. 41(6), 823–826 (2009). doi: 10.1016/j.optlastec.2008.12.008 ADSCrossRefGoogle Scholar
  31. Wang, P., Cao, B., Wei, W., Gan, Z., Liu, S.: Improved light extraction of GaN-based light-emitting diodes by ITO patterning with optimization design. Solid State Electron. 54(3), 283–287 (2010). doi: 10.1016/j.sse.2009.10.005 ADSCrossRefGoogle Scholar
  32. Wang, X., Li, K., Kong, F., Zhang, Z.: Surface spherical crown arrays structure increases GaN-based LED efficiency. Opt. Quantum Electron. 45(7), 611–616 (2012). doi: 10.1007/s11082-012-9644-2 CrossRefGoogle Scholar
  33. Wiesmann, C.: Nano-structured LEDs—light extraction mechanisms and applications. Ph.D. thesis, Science Faculty, Universität Regensburg, Regensburg, Germany, pp. 41–45 (2009)Google Scholar
  34. Wiesmann, C., Bergenek, K., Linder, N., Schwarz, U.T.: Photonic crystal LEDs—designing light extraction. Laser Photon. Rev. 3(3), 262–286 (2009). doi: 10.1002/lpor.200810053 CrossRefGoogle Scholar
  35. Xue, S.-J., Fang, L., Long, X.-M., Lu, Y., Wu, F., Li, W.-J., Zuo, J.-Q., Zhang, S.-F.: Influence of ITO, graphene thickness and electrodes buried depth on LED thermal–electrical characteristics using numerical simulation. Chin. Phys. Lett. 31(2), 028501-1–028501-4 (2014). doi: 10.1088/0256-307x/31/2/028501 ADSCrossRefGoogle Scholar
  36. Yeh, P., Yariv, A., Hong, C.-S.: Electromagnetic propagation in periodic stratified media. I. General theory. JOSA 67(4), 423–438 (1976)ADSCrossRefGoogle Scholar
  37. Yu, Y., Wu, X.: Study of the generalized mixture rule for determining effective conductivity of two-phase stochastic models. Appl. Geophys. 7(3), 210–216 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meng Liu
    • 1
    • 2
  • Kang Li
    • 1
  • Fan-min Kong
    • 1
  • Jia Zhao
    • 1
  • Qing-an Ding
    • 3
  • Ming-yu Zhang
    • 1
    • 4
  1. 1.School of Information Science and EngineeringShandong UniversityJinanChina
  2. 2.School of Physics and Electronics EngineeringQilu Normal UniversityJinanChina
  3. 3.School of Information and Electrical EngineeringShandong University of Science and TechnologyQingdaoChina
  4. 4.School of Information and Electrical EngineeringShandong Jianzhu UniversityJinanChina

Personalised recommendations