Advertisement

Random lasing based on rough dye-doped polymer thin film

  • Lihua Ye
  • Yexuan Wang
  • Yangyang Feng
  • Chong Zhao
  • Guohua Hu
  • Yiping Cui
Article

Abstract

In this work, a random laser action from rough dye film processed by surface rubbing with flannelette is reported. For the dye-doped polymer films with high surface roughness by surface rubbing, laser mode is stable, and threshold energy is found to be very low that is 333 μJ/cm2. By analyzing the random lasing spectrum using power Fourier transforms, an average resonator length was estimated as about 18.99 μm, which is 6.4 times larger than the film thickness. Furthermore, the influence of the concentration of Pyrromethene 597 (PM597) on the random laser was studied, and the results indicate that there is an optimum concentration for achieving the lowest threshold. Compared with glass groove structure with the dye doped film, the random laser based on the rough structure has reasonable time stability. This microstructure type random laser reported in this work is in low cost and easy to make compared with other laser structures of this category.

Keywords

Microstructure Random laser Laser dyes Polymer thin film 

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (Grant Number 11174160), (Grant Number 11474052) and (Grant Number 11274062).

References

  1. Bhaktha, B.N.S., Bachelard, N., Noblin, X., Sebbah, P.: Optofluidic random laser. Appl. Phys. Lett. (2012). doi: 10.1063/1.4757872 Google Scholar
  2. Cao, H., Zhao, Y.G., Ho, S.T., Seelig, E.W., Wang, Q.H., Chang, R.P.H.: Random laser action in semiconductor powder. Phys. Rev. Lett. (1999). doi: 10.1103/PhysRevLett.82.2278 Google Scholar
  3. Cerdán, L., Costela, A., García-Moreno, I., Garcia, O., Sastre, R.: Laser emission from mirrorless waveguides based on photosensitized polymers incorporating POSS. Opt. Express (2010). doi: 10.1364/OE.18.010247 Google Scholar
  4. Chen, Y.J., Herrnsdorf, J., Guilhabert, B., Zhang, Y.F., Watson, I.M., Gu, E., Laurand, N., Dawson, M.: Colloidal quantum dot random laser. Opt. Express (2011). doi: 10.1364/OE.19.002996 Google Scholar
  5. Costela, A., Garcia-Moreno, I., Cerdan, L., Martin, V., Garcia, O., Sastre, R.: Dye-doped POSS solutions random nanomaterials for laser emission. Adv. Mater. (2009). doi: 10.1002/adma.200900799 Google Scholar
  6. Ding, T.N., Garmire, E.: Measuring refractive index and thickness of thin films: a new technique. Appl. Opt. (1983). doi: 10.1364/AO.22.003177 Google Scholar
  7. Frolov, S.V., Vardeny, Z.V., Zakhidov, A.A., Baughman, R.H.: Laser-like emission in opal photonic crystals. Opt. Commun. (1999). doi: 10.1016/S0030-4018(99)00089-9 Google Scholar
  8. Lawandy, N.M., Balachandran, R.M., Gomes, A.S.L., Sauvain, E.: Laser action in strongly scattering media. Nature (1994). doi: 10.1038/368436a0 Google Scholar
  9. Polson, R.C., Raikh, M.E., Vardeny, Z.V.: Universality in unintentional laser resonators in π-conjugated polymer films. C. R. Physique. (2002). doi: 10.1016/S1631-0705(02)01336-1 Google Scholar
  10. Smuk, A., Lazaro, E., Olson, L.P., Lawandy, N.M.: Random laser action in bovine semen. Opt. Commun. (2011). doi: 10.1016/j.optcom.2010.11.004 Google Scholar
  11. Sznitko, L., Szukalski, A., Cyprych, K., Karpinski, P., Miniewicz, A., Mysliwiec, J.: Surface roughness induced random lasing in bio-polymeric dye doped film. Chem. Phys. Lett. (2013). doi: 10.1016/j.cplett.2013.05.018 Google Scholar
  12. Sznitko, L., Cyprych, K., Szukalski, A., Miniewicz, A., Mysliwiec, J.: Coherent–incoherent random lasing based on nano-rubbing induced cavities. Laser Phys. Lett. 11, 045801 (2014)ADSCrossRefGoogle Scholar
  13. Takahashi, T., Nakamura, T., Adachi, S.: Blue-light-emitting ZnSe random laser. Opt. Lett. (2009). doi: 10.1364/OL.34.003923 Google Scholar
  14. Tulek, A., Polson, R.C., Vardeny, Z.V.: Naturally occurring resonators in random lasing of π-conjugated polymer films. Nat. Phys. 6, 303–310 (2010)CrossRefGoogle Scholar
  15. Vishnubhatla, K.C., Clark, J., Lanzani, G., Ramponi, R., Osellame, R., Virgil, T.: Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels. Appl. Phys. Lett. 94, 041123-1–041123-3 (2009)ADSCrossRefGoogle Scholar
  16. Vishnubhatla, K.C., Osellamea, R., Lanzania, G., Ramponia, R., Virgilli, T.: Organic random laser in an optofluidic chip fabricated by femtosecond laser. Proc. SPIE. 7585, 75850E-1–75850E-4 (2010)CrossRefGoogle Scholar
  17. Wiersma, D.S., Lagendijk, A.: Light diffusion with gain and random lasers. Phys. Rev. E (1996). doi: 10.1103/PhysRevE.54.4256 Google Scholar
  18. Ye, L.H., Yin, Z.L., Zhao, C., Hou, C., Wang, Y.X., Cui, Y.P., Lu, Y.Q.: Thermally tunable random laser in dye-doped liquid crystals. J. Mod. Opt. (2013). doi: 10.1080/09500340.2013.844867 Google Scholar
  19. Ye, L.H., Hou, C., Lv, C.G., Zhao, C., Yin, Z.L., Cui, Y.P., Lu, Y.Q.: Tailoring of random lasing characteristics in dye-doped nematic liquid crystals. Appl. Phys. B 115, 303–309 (2014)ADSCrossRefGoogle Scholar
  20. Zhao, X.K., Wu, Z.X., Ning, S.Y., Liang, S.X., Wang, D.W., Hou, X.: Random lasing from granular surface of waveguide with blends of PS and PMMA. Opt. Express (2011). doi: 10.1364/OE.19.016126 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lihua Ye
    • 1
  • Yexuan Wang
    • 1
  • Yangyang Feng
    • 1
  • Chong Zhao
    • 1
  • Guohua Hu
    • 1
  • Yiping Cui
    • 1
  1. 1.Advanced Photonics Center, School of Electronic Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations