Modelling the coupling of electromagnetic waves to cylindrical waveguides with the Method of Lines

  • Stefan F. Helfert
Part of the following topical collections:
  1. Optical Wave & Waveguide Theory and Numerical Modelling 2015


The coupling of electromagnetic fields to cylindrical waveguides is studied in this paper. For this purpose, the Method of Lines in cylindrical coordinates is used. A discretization occurs in radial direction only, whereas the azimuthal dependency is treated analytically. Arbitrary input fields are expanded into Fourier series. To determine the excitation of a certain mode, only one of the Fourier components has to be computed. Therefore, the numerical effort is very low. The algorithm has been verified by studying the coupling of Gaussian beams to various modes of dielectric waveguides and by simulating the excitation of the Sommerfeld-mode on a metallic wire for Terahertz frequencies.


Cylindrical waveguides Metallic wires Terahertz frequencies Sommerfeld-mode End-fire coupling Fourier series 


  1. Cao, Q., Jahns, J.: Azimuthally polarized surface plasmons as effective Terahertz waveguides. Opt. Expr. 13, 511–518 (2005)ADSCrossRefGoogle Scholar
  2. Conradi, O., Pregla, R.: Considering azimuthal dependence in the numerical modeling of VCSELs. Opt. Quantum Electron. 32, 759–767 (2000)CrossRefGoogle Scholar
  3. Edelmann, A., Moeller, L., Jahns, J.: Coupling of Terahertz radiation to metallic wire using end-fire technique. Electron. Lett. 49(7), 884–886 (2013)CrossRefGoogle Scholar
  4. Helfert, S.F., Pregla, R.: The method of lines: a versatile tool for the analysis of waveguide structures. Electromagnetics 22, 615–637 (2002)CrossRefGoogle Scholar
  5. Helfert, S.F., Barcz, A., Pregla, R.: Three-dimensional vectorial analysis of waveguide structures with the method of lines. Opt. Quantum Electron. 35, 381–394 (2003)CrossRefGoogle Scholar
  6. Helfert, S.F., Edelmann, A., Jahns, J.: Hollow waveguides as polarization converting elements: a theoretical study. J. Eur. Opt. Soc. Rapid Publ. 10(15006), 1–7 (2015)Google Scholar
  7. Pregla, R.: MoL-BPM method of lines based beam propagation method. In: Huang, W.P. (ed.) Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices (PIER 11), Progress in Electromagnetic Research, pp. 51–102. EMW Publishing, Cambridge, MA (1995)Google Scholar
  8. Pregla, R.: Analysis of Electromagnetic Fields and Waves—the Method of Lines. Wiley, Chichester (2008)CrossRefGoogle Scholar
  9. Pregla, R., Ahlers, E.: New vector-BPM in cylindrical coordinates based on the Method of Lines. In: OSA Integr. Photo. Resear. Tech. Dig., Dana Point, USA, vol. 7, pp. 24–26 (1995)Google Scholar
  10. Pregla, R., Helfert, S.F.: Modeling of microwave devices with the method of lines. In: Beker, B., Chen, Y. (eds.) Recent Research Developments in Microwave Theory and Techniques, pp. 145–196. Research Signpost, Trivandrum, Kerala (2002)Google Scholar
  11. Pregla, R., Pascher, W.: The method of lines. In: Itoh, T. (ed.) Numerical Techniques for Microwave and Millimeter Wave Passive Structures, pp. 381–446. Wiley, New York (1989)Google Scholar
  12. Rogge, U., Pregla, R.: Method of lines for the analysis of dielectric waveguides. J. Lightwave Technol. 11(12), 2015–2020 (1993)ADSCrossRefGoogle Scholar
  13. Wang, K., Mittleman, D.M.: Metal wires for Terahertz wave guiding. Nature 432, 379–379 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.FernUniversität in HagenHagenGermany

Personalised recommendations