Graphene based surface plasmon resonance gas sensor for terahertz

  • Triranjita Srivastava
  • Amrita Purkayastha
  • Rajan Jha
Part of the following topical collections:
  1. Optical Wave & Waveguide Theory and Numerical Modelling 2015


We report a SPR based gas sensor using doped graphene monolayer employing the ATR technique via modified Otto coupling configuration. The proposed gas sensor is an approach different from the already reported Otto geometry for SP excitation in terahertz frequencies where the air gap has been replaced by a dielectric spacer layer (organic material) of refractive index (n d ) 1.44, 1.50 and 1.54 at operating terahertz frequency of 5 THz. The performance of the sensor with respect to key system parameters such as the thickness of the dielectric layer, sensitivity, detection accuracy and FOM are investigated in the paper using angular interrogation via Transfer matrix method. It is observed that with increasing refractive index of spacer dielectric, the proposed gaseous sensor exhibits trade off between sensitivity and detection accuracy. However, the FOM is approximately equal for refractive indices 1.44 and 1.50 of spacer material, which is ~20 % higher than that at n d  = 1.54. The FOM for n d  = 1.44, increases from 527 (analyte refractive index = 1.00) to 741 RIU−1 (analyte refractive index = 1.10).


Surface plasmon resonance Sensor Terahertz 


  1. Barlow, H., Cullen, A.: Surface waves. Proc. IEE Part III: Radio Commun. Eng. 100(68), 329 (1953)Google Scholar
  2. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  3. Gan, C.H.: Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 101, 1116091 (2012)CrossRefGoogle Scholar
  4. Gan, C.H., Chu, H.S., Li, E.P.: Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85, 125431 (2012)ADSCrossRefGoogle Scholar
  5. Gauglitz, G., Proll, G.: Strategies for label-free optical detection. In: Renneberg, R., Lisdat, F. (eds.) Biosensing for the 21st Century. Springer, Berlin, Heidelberg (2008)Google Scholar
  6. Georgiadis, R., Peterlinz, K., Peterson, A.: Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy. J. Am. Chem. Soc. 122(13), 3166–3173 (2000)CrossRefGoogle Scholar
  7. Globus, T.R., Woolard, D.L., Khromova, T., Crowe, T.W., Bykhovskaia, M., Gelmont, B.L., Hesler, J., Samuels, A.C.: THz-spectroscopy of biological molecules. J. Biol. Phys. 29(2–3), 89–100 (2003)CrossRefGoogle Scholar
  8. Grigorenko, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photon. 6, 749–758 (2012)ADSCrossRefGoogle Scholar
  9. Hibbins, A.P., Evans, B.R., Sambles, J.R.: Experimental verification of designer surface plasmons. Science 308, 670–672 (2005)ADSCrossRefGoogle Scholar
  10. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15 (1999)CrossRefGoogle Scholar
  11. Koppens, F.H.L., Chang, D.E., Garca de Abajo, F.J.: Graphene plasmonics: a platform for strong light-matter interaction. Nano Lett. 11(8), 3370–3377 (2011)CrossRefGoogle Scholar
  12. Lockyear, M.J., Hibbins, A.P., Sambles, J.R.: Microwave surface-plasmon-like modes on thin metamaterials. Phys. Rev. Lett. 102(7), 073901 (2009)ADSCrossRefGoogle Scholar
  13. Low, T., Avouris, P.: Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014)CrossRefGoogle Scholar
  14. Maharana, P.K., Bharadwaj, S., Jha, R.: Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism. J. Appl. Phys. 114, 014304 (2013)ADSCrossRefGoogle Scholar
  15. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)Google Scholar
  16. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)ADSCrossRefGoogle Scholar
  17. Pendry, J.B., Martin-Moreno, L., Garcia-Vidal, F.J.: Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)ADSCrossRefGoogle Scholar
  18. Phillips, K.S., Cheng, Q.J.: Surface plasmon resonance. In: Walker, J.M., Rapley, R. (eds.) Molecular Biomethods Handbook. Springer, Berlin, Heidelberg (2008)Google Scholar
  19. Purkayastha, A., Srivastava, T., Jha, R.: Ultrasensitive THz-plasmonics gaseous sensor using doped graphene. Sens. Actuators B Chem. 227, 291–295 (2016)CrossRefGoogle Scholar
  20. Sharma, A.K., Jha, R., Gupta, B.D.: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)CrossRefGoogle Scholar
  21. Smith, D.R., Loewenstein, E.V.: Optical constants of metal oxides in the far infrared region. Appl. Opt. 15(4), 859–861 (1976)ADSCrossRefGoogle Scholar
  22. Ulrich, R., Tacke, M.: Submillimeterwaveguiding on periodic metal structure. Appl. Phys. Lett. 22, 251–253 (1973)ADSCrossRefGoogle Scholar
  23. Wunsch, B., Tauber, T., Sols, F., Guinea, F.: Dynamical polarization of graphene at finite doping. New J. Phys. 8, 1–15 (2006)ADSCrossRefGoogle Scholar
  24. Yao, H., Zhong, S.: High-mode spoof SPP of periodic metal grooves for ultrasensitive terahertz sensing. Opt Express 22(21), 25150–25160 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Triranjita Srivastava
    • 1
  • Amrita Purkayastha
    • 2
  • Rajan Jha
    • 2
  1. 1.Department of Physics, Kalindi CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Nano Photonics and Plasmonics Laboratory, School of Basic SciencesIITBhubaneshwarIndia

Personalised recommendations