Skip to main content
Log in

Enhanced Raman amplification by conventional and hybrid photonic crystal based ring structure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present new structures based on ring, conventional photonic crystal and hybrid PhC for enhanced Raman amplification. The structures consist of two separate entrances for the pump and signal. In this way, only pump is coupled into the ring and signal passes through the amplified pump without creating coupling noise. Using engineered nano holes filled with optofluidic materials in the signal and pump paths, we reduce pump and signal group velocity to improve the structure and achieve larger Raman gain and less dispersion. The time evolution and propagation of picosecond signal pulses and dispersion inside the device are analyzed and Raman gain, Raman bandwidth and bit rate are studied in one-ring and two-ring structures. To model Raman amplification in these structures, Maxwell equations are solved using finite difference time domain method considering optical nonlinear parameters like two photon absorption, free carrier absorption and Kerr effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bahrampour, A.R., Bazouband, F.: Gain ripple minimization in the wide-band SCISSOR Raman amplifier. Opt. Commun. 282, 1648–1653 (2009)

    Article  ADS  Google Scholar 

  • Bahrampour, A.R., Bazouband, F., Nickfarjam, V.: Effect of direct coupling of microrings on the gain bandwidth of cascade microring Raman amplifier. Opt. Commun. 283, 2939–2946 (2010)

    Article  ADS  Google Scholar 

  • Bakhshi, S., Moravvej-Farshi, M.K., Ebnali-Heidari, M.: Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration. Appl. Opt. 50, 4048–4053 (2011)

    Article  ADS  Google Scholar 

  • Bakhshi, S., Moravvej-Farshi, M.K., Ebnali-Heidari, M.: Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer. Appl. Opt. 51, 2687–2692 (2012)

    Article  ADS  Google Scholar 

  • Blair, S., Zheng, K.: Microresonator-enhanced Raman amplification. J. Opt. Soc. Am. B 23, 1117–1123 (2006)

    Article  ADS  Google Scholar 

  • Claps, R., Raghunathan, V., Dimitropoulos, D., Jalali, B.: Influence of nonlinear absorption on Raman amplification in Silicon waveguides. Opt. Express 12, 2774–2780 (2004)

    Article  ADS  Google Scholar 

  • Claps, R., Raghunathn, V., Boyraz, O., Koonath, P., Dimitropoulos, D., Jalali, B.: Raman amplification and lasing in SiGe Waveguides. Opt. Express 13, 2459–2466 (2005)

    Article  ADS  Google Scholar 

  • Corcoran, B., Monat, C., Pelusi, M.D., Grillet, C., White, T.P., O’Faolain, L., Krauss, T.F., Eggleton, B.J., Moss, D.J.: Optical signal processing on a silicon chip at 640 Gb/s using slow-light. Opt. Express 18, 7770–7781 (2010)

    Article  ADS  Google Scholar 

  • Dekker, R., Usechak, N., Först, M., Driessen, A.: Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J. Phys. D Appl. Phys. 40, R249–R271 (2007)

    Article  ADS  Google Scholar 

  • Dimitropoulos, D., Solli, D.R., Claps, R., Boyraz, O., Jalali, B.: Noise figure of silicon Raman amplifiers. J. Lightwave Technol. 26, 847–852 (2008)

    Article  ADS  Google Scholar 

  • Doylend, J.K., Cohen, O., Lee, M.R., Raday, O., Xu, S., Sih, V., Rong, H., Paniccia, M.: Tunable ring resonators for silicon Raman laser and amplifier applications. Proc. SPIE 6896, 68960Q-1–68960Q-9 (2008)

    Article  Google Scholar 

  • Ferrara, M. A. Rendina, I. and Sirleto, L.: Raman amplifier based on Si-nc, fotonica AEIT Italian Conference, 1–4 (2014)

  • Huang, Y. Shum, P. P. Luan, F. and Tang, M.: Low loss and wide linear amplification range integrated Raman amplifier based on silicon-chalcogenide slot waveguide. OECC, 519–520 (2011)

  • Keyvaninia, S., Ahmadi, E.D., Farman, F., Taghiabadi, R., Bahrampour, A.: Gain variation of Raman amplifier in silicon micro-ring coupled resonator optical waveguides: Proc. SPIE 6998, 699818-1–699818-8 (2008)

    Google Scholar 

  • Kippenberg, T. J. A.: Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities, Ph.D thesis. California Institute of Technology, (2004)

  • Krause, M., Renner, H., Brinkmeyer, E.: Silicon Raman amplifiers with ring-resonator-enhanced pump power. IEEE J. Sel. Top. Quant. 16, 216–225 (2010)

    Article  Google Scholar 

  • Kroeger, F., Ryasnyanskiy, A., Baron, A., Dubreuil, N., Delaye, P., Frey, R., Roosen, G., Peyrade, D.: Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides. Appl. Phys. Lett. 96, 241102-1–241102-3 (2010)

    Article  ADS  Google Scholar 

  • Lin, Q., Painter, O.J., Agrawal, G.P.: Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007)

    Article  ADS  Google Scholar 

  • Liu, A., Rong, H., Paniccia, M.: Net optical gain in a low loss silicon-on-insulator weaveguide by stimulated Raman scattering. Opt. Express 12, 4261–4268 (2004)

    Article  ADS  Google Scholar 

  • McMillan, J.F., Yang, X., Panoiu, N.C., Osgood, R.M., Wong, C.W.: Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt. Lett. 31, 1235–1237 (2006)

    Article  ADS  Google Scholar 

  • Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L., Krauss, T.F.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010)

    Article  Google Scholar 

  • Rong, H., Xu, S., Kuo, Y.H., Sih, V., Cohen, O., Raday, O., Paniccia, M.: Monolithic integrated ring resonator Raman silicon laser and amplifier. Proc. SPIE 6485, 1–8 (2007)

    Google Scholar 

  • Rukhlenko, I.D., Premaratne, M.: Spectral compression and group delay of optical pulses in silicon Raman amplifiers. Opt. Lett. 35, 3138–3140 (2010)

    Article  ADS  Google Scholar 

  • Rukhlenko, I.D., Dissanayake, C., Premaratne, M., Agrawal, G.P.: Optimization of Raman amplification in silicon waveguide with finite facet reflectivities. IEEE J. Sel. Top. Quant. 16, 226–233 (2010)

    Article  Google Scholar 

  • Rukhlenko, I.D., Kalavally, V.: Raman amplification in silicon-nanocrystal waveguides. Lightwave Technol 32, 130–134 (2014)

    Article  ADS  Google Scholar 

  • Seyedfaraji, A., Ahmadi, V.: Enhanced Raman Amplification by Hybrid Photonic Crystals. ICTON, 1–4 (2010)

  • Seidfaraji, A., Ahmadi, V.: Enhanced Raman amplification by photonic crystal based waveguide structure. ICTON, 1–4 (2012)

  • Seyedfaraji, A., Ahmadi, V.: New design of ring-based Raman amplifier using optofluidic materials. Opt. Eng. 52, 097103-1–097103-6 (2013a)

    Article  ADS  Google Scholar 

  • Seyedfaraji, A., Ahmadi, V.: Improvement of Raman amplifier bandwidth by means of slow light in photonic crystal based waveguide structure. Opt. Quant. Electron. 45, 1237–1248 (2013b)

    Article  Google Scholar 

  • Yi-Hua, H. Iwamoto, S. Arakawa, Y.: Design of slow-light grating waveguides for silicon Raman amplifier, CLEO-PR, 1–2 (2013)

  • Zheng, W., Xing, M., Ren, G., Johnson, S.G., Zhou, W., Chen, W., Chen, L.: Integration of photonic crystal polarization beam splitter and waveguide bend. Opt. Express 17, 8657–8668 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedfaraji, A., Ahmadi, V. Enhanced Raman amplification by conventional and hybrid photonic crystal based ring structure. Opt Quant Electron 48, 190 (2016). https://doi.org/10.1007/s11082-016-0448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0448-7

Keywords

Navigation