Advertisement

Enhanced Raman amplification by conventional and hybrid photonic crystal based ring structure

  • Amire Seyedfaraji
  • Vahid Ahmadi
Article
  • 91 Downloads

Abstract

In this paper, we present new structures based on ring, conventional photonic crystal and hybrid PhC for enhanced Raman amplification. The structures consist of two separate entrances for the pump and signal. In this way, only pump is coupled into the ring and signal passes through the amplified pump without creating coupling noise. Using engineered nano holes filled with optofluidic materials in the signal and pump paths, we reduce pump and signal group velocity to improve the structure and achieve larger Raman gain and less dispersion. The time evolution and propagation of picosecond signal pulses and dispersion inside the device are analyzed and Raman gain, Raman bandwidth and bit rate are studied in one-ring and two-ring structures. To model Raman amplification in these structures, Maxwell equations are solved using finite difference time domain method considering optical nonlinear parameters like two photon absorption, free carrier absorption and Kerr effect.

Keywords

Photonic crystal Hybrid PhC Raman amplification Maxwell equations 

References

  1. Bahrampour, A.R., Bazouband, F.: Gain ripple minimization in the wide-band SCISSOR Raman amplifier. Opt. Commun. 282, 1648–1653 (2009)ADSCrossRefGoogle Scholar
  2. Bahrampour, A.R., Bazouband, F., Nickfarjam, V.: Effect of direct coupling of microrings on the gain bandwidth of cascade microring Raman amplifier. Opt. Commun. 283, 2939–2946 (2010)ADSCrossRefGoogle Scholar
  3. Bakhshi, S., Moravvej-Farshi, M.K., Ebnali-Heidari, M.: Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration. Appl. Opt. 50, 4048–4053 (2011)ADSCrossRefGoogle Scholar
  4. Bakhshi, S., Moravvej-Farshi, M.K., Ebnali-Heidari, M.: Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer. Appl. Opt. 51, 2687–2692 (2012)ADSCrossRefGoogle Scholar
  5. Blair, S., Zheng, K.: Microresonator-enhanced Raman amplification. J. Opt. Soc. Am. B 23, 1117–1123 (2006)ADSCrossRefGoogle Scholar
  6. Claps, R., Raghunathan, V., Dimitropoulos, D., Jalali, B.: Influence of nonlinear absorption on Raman amplification in Silicon waveguides. Opt. Express 12, 2774–2780 (2004)ADSCrossRefGoogle Scholar
  7. Claps, R., Raghunathn, V., Boyraz, O., Koonath, P., Dimitropoulos, D., Jalali, B.: Raman amplification and lasing in SiGe Waveguides. Opt. Express 13, 2459–2466 (2005)ADSCrossRefGoogle Scholar
  8. Corcoran, B., Monat, C., Pelusi, M.D., Grillet, C., White, T.P., O’Faolain, L., Krauss, T.F., Eggleton, B.J., Moss, D.J.: Optical signal processing on a silicon chip at 640 Gb/s using slow-light. Opt. Express 18, 7770–7781 (2010)ADSCrossRefGoogle Scholar
  9. Dekker, R., Usechak, N., Först, M., Driessen, A.: Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J. Phys. D Appl. Phys. 40, R249–R271 (2007)ADSCrossRefGoogle Scholar
  10. Dimitropoulos, D., Solli, D.R., Claps, R., Boyraz, O., Jalali, B.: Noise figure of silicon Raman amplifiers. J. Lightwave Technol. 26, 847–852 (2008)ADSCrossRefGoogle Scholar
  11. Doylend, J.K., Cohen, O., Lee, M.R., Raday, O., Xu, S., Sih, V., Rong, H., Paniccia, M.: Tunable ring resonators for silicon Raman laser and amplifier applications. Proc. SPIE 6896, 68960Q-1–68960Q-9 (2008)CrossRefGoogle Scholar
  12. Ferrara, M. A. Rendina, I. and Sirleto, L.: Raman amplifier based on Si-nc, fotonica AEIT Italian Conference, 1–4 (2014)Google Scholar
  13. Huang, Y. Shum, P. P. Luan, F. and Tang, M.: Low loss and wide linear amplification range integrated Raman amplifier based on silicon-chalcogenide slot waveguide. OECC, 519–520 (2011)Google Scholar
  14. Keyvaninia, S., Ahmadi, E.D., Farman, F., Taghiabadi, R., Bahrampour, A.: Gain variation of Raman amplifier in silicon micro-ring coupled resonator optical waveguides: Proc. SPIE 6998, 699818-1–699818-8 (2008)Google Scholar
  15. Kippenberg, T. J. A.: Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities, Ph.D thesis. California Institute of Technology, (2004)Google Scholar
  16. Krause, M., Renner, H., Brinkmeyer, E.: Silicon Raman amplifiers with ring-resonator-enhanced pump power. IEEE J. Sel. Top. Quant. 16, 216–225 (2010)CrossRefGoogle Scholar
  17. Kroeger, F., Ryasnyanskiy, A., Baron, A., Dubreuil, N., Delaye, P., Frey, R., Roosen, G., Peyrade, D.: Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides. Appl. Phys. Lett. 96, 241102-1–241102-3 (2010)ADSCrossRefGoogle Scholar
  18. Lin, Q., Painter, O.J., Agrawal, G.P.: Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007)ADSCrossRefGoogle Scholar
  19. Liu, A., Rong, H., Paniccia, M.: Net optical gain in a low loss silicon-on-insulator weaveguide by stimulated Raman scattering. Opt. Express 12, 4261–4268 (2004)ADSCrossRefGoogle Scholar
  20. McMillan, J.F., Yang, X., Panoiu, N.C., Osgood, R.M., Wong, C.W.: Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt. Lett. 31, 1235–1237 (2006)ADSCrossRefGoogle Scholar
  21. Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L., Krauss, T.F.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010)CrossRefGoogle Scholar
  22. Rong, H., Xu, S., Kuo, Y.H., Sih, V., Cohen, O., Raday, O., Paniccia, M.: Monolithic integrated ring resonator Raman silicon laser and amplifier. Proc. SPIE 6485, 1–8 (2007)Google Scholar
  23. Rukhlenko, I.D., Premaratne, M.: Spectral compression and group delay of optical pulses in silicon Raman amplifiers. Opt. Lett. 35, 3138–3140 (2010)ADSCrossRefGoogle Scholar
  24. Rukhlenko, I.D., Dissanayake, C., Premaratne, M., Agrawal, G.P.: Optimization of Raman amplification in silicon waveguide with finite facet reflectivities. IEEE J. Sel. Top. Quant. 16, 226–233 (2010)CrossRefGoogle Scholar
  25. Rukhlenko, I.D., Kalavally, V.: Raman amplification in silicon-nanocrystal waveguides. Lightwave Technol 32, 130–134 (2014)ADSCrossRefGoogle Scholar
  26. Seyedfaraji, A., Ahmadi, V.: Enhanced Raman Amplification by Hybrid Photonic Crystals. ICTON, 1–4 (2010)Google Scholar
  27. Seidfaraji, A., Ahmadi, V.: Enhanced Raman amplification by photonic crystal based waveguide structure. ICTON, 1–4 (2012)Google Scholar
  28. Seyedfaraji, A., Ahmadi, V.: New design of ring-based Raman amplifier using optofluidic materials. Opt. Eng. 52, 097103-1–097103-6 (2013a)ADSCrossRefGoogle Scholar
  29. Seyedfaraji, A., Ahmadi, V.: Improvement of Raman amplifier bandwidth by means of slow light in photonic crystal based waveguide structure. Opt. Quant. Electron. 45, 1237–1248 (2013b)CrossRefGoogle Scholar
  30. Yi-Hua, H. Iwamoto, S. Arakawa, Y.: Design of slow-light grating waveguides for silicon Raman amplifier, CLEO-PR, 1–2 (2013)Google Scholar
  31. Zheng, W., Xing, M., Ren, G., Johnson, S.G., Zhou, W., Chen, W., Chen, L.: Integration of photonic crystal polarization beam splitter and waveguide bend. Opt. Express 17, 8657–8668 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Faculty of Engineering and TechnologyAlzahra UniversityTehranIran

Personalised recommendations