Harvesting heat with thermo-mechanically bistable beams: working principle and theoretical performances

  • Arthur Arnaud
  • Jihane Boughaleb
  • Stephane Monfray
  • Frederic Boeuf
  • Orphee Cugat
  • Thomas Skotnicki
Part of the following topical collections:
  1. Advanced Materials for photonics and electronics


The interest in miniaturizing heat engines to harvest low-grade heat has grown up with the development of wireless sensors requiring little energy to work. The bimetallic strip heat engines exploit the thermo-mechanical instability of composite membranes to convert heat into mechanical energy and have been proposed as an alternative to Seebeck thermoelectric generators based on the properties of semiconductors like bismuth tellurides. This article aims to describe the theoretical operation of these heat engines by explaining the nature and the conditions of occurrence of the thermo-mechanical instability of simply-supported beams. The thermodynamic cycle of the heat engine is explained and the performances of nine types of bimetallic beams are evaluated.


Thermal snap-through Bimetallic beams Bimetallic strip heat engine Thermal energy harvesting 



The project was partially funded by the French Inter-Ministerial Fund (FUI) through HEATec Project.


  1. Arnaud, A., Boisseau, S., Monfray, S., et al.: Piezoelectric and electrostatic bimetal-based thermal energy harvesters. J. Phys. Conf. Ser. 476, 012062 (2013). doi: 10.1088/1742-6596/476/1/012062 ADSCrossRefGoogle Scholar
  2. Arnaud, A., Boughaleb, J., Monfray, S., Boeuf, F., Cugat, O., Skotnicki, T.: Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale. J. Micromech. Microeng. 25(10), 104003 (2015). doi: 10.1088/0960-1317/25/10/104003 ADSCrossRefGoogle Scholar
  3. Arnaud, A., Boughaleb, J., Monfray, S., Boeuf, F., Cugat, O., Skotnicki, T.: Reduced model for the comprehension of the operation of a thermo-mechanical energy harvester. In: 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS) (2015). doi: 10.1109/newcas.2015.7181983
  4. Boisseau, S., Despesse, G., Monfray, S., Puscasu, O., Skotnicki, T.: Semi-flexible bimetal-based thermal energy harvesters. Smart Mater. Struct. 22(2), 025021 (2013). doi: 10.1088/0964-1726/22/2/025021 ADSCrossRefGoogle Scholar
  5. Boughaleb, J., Arnaud, A., Cottinet, P., et al.: Thermal modeling and optimization of a thermally matched energy harvester. Smart Mater. Struct. 24(8), 085025 (2015a). doi: 10.1088/0964-1726/24/8/085025 ADSCrossRefGoogle Scholar
  6. Boughaleb, J., Arnaud, A., Cottinet, P., et al.: Analysis of the thermal impact of a bimetal on the dynamic behavior of a thermal energy harvester. Sens. Actuators A: Phys. 236, 104–115 (2015b). doi: 10.1016/j.sna.2015.10.028 CrossRefGoogle Scholar
  7. Michael, A., Kwok, C.: Design criteria for bi-stable behavior in a buckled multi-layered MEMS bridge. J. Micromech. Microeng. 16(10), 2034–2043 (2006). doi: 10.1088/0960-1317/16/10/016 ADSCrossRefGoogle Scholar
  8. Puscasu, O., Monfray, S., Savelli, G. et al.: An innovative heat harvesting technology (HEATec) for above-Seebeck performance. In: 2012 International Electron Devices Meeting (2012). doi: 10.1109/iedm.2012.6479031. (2012)
  9. Puscasu, O., Monfray, S., Boughaleb, J., et al.: Flexible bimetal and piezoelectric based thermal to electrical energy converters. Sens. Actuators A Phys. 214, 7–14 (2014). doi: 10.1016/j.sna.2014.03.027 CrossRefGoogle Scholar
  10. Ravindran, S., Kroener, M., Shabanian, A., Goldschmidtboeing, F., Woias, P.: Analysis of a bimetallic micro heat engine for energy harvesting. Smart Mater. Struct. 23(3), 035011 (2014). doi: 10.1088/0964-1726/23/3/035011 ADSCrossRefGoogle Scholar
  11. Skotnicki, T.: France Patent FR2951873 (A1) (2009)Google Scholar
  12. Timoshenko, S.: Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11(3), 233–255 (1925). doi: 10.1364/josa.11.000233 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.STMicroelectronicsCrollesFrance
  2. 2.G2ElabUniversity Grenoble AlpesGrenobleFrance
  3. 3.CNRSUniversity Grenoble AlpesGrenobleFrance

Personalised recommendations