Design and analysis of all-optical half-adder, half-subtractor and 4-bit decoder based on SOA-MZI configuration

  • Pallavi Singh
  • Ashutosh Kumar Singh
  • Vanya Arun
  • H. K. Dixit


In the paper, all-optical Boolean circuits implemented with a semiconductor optical amplifier based Mach–Zehnder interferometer, are simulated and analyzed at 10 Gb/s to extract a simple design rule. Authors propose the novel designs of half-adder, half-subtractor and 4-bit decoder for various results and also discussed the results at different bit rates. In the designs, one data acts as a pump generated through clock wave laser and another acts as a probe from mode lock laser. The designs consist of non-linearity in semiconductor optical amplifier using the cross gain modulation technique. Cross gain modulation refers to data on pump signal modulating the carrier density in semiconductor optical amplifier. At the same time, the gain variation indentation inverts the probe signal after passing through amplifier. Interferometer structure is used to convert the phase modulation into intensity modulation. The paper aims to achieve the goal through simulation and Boolean analysis in terms of gates, to provide simple design rule. Obtained results are very useful in the design of other more complex all-optical circuits that employ the given gates as the basic building block. The extinction ratio is the optimization criteria for all the three circuits at different values of pump power and bit rate of input pulse.


Semiconductor optical amplifier based Mach–Zehnder Interferometer (SOA-MZI) Cross Gain Modulation (XGM) Cross Phase Modulation (XPM) Four Wave Mixing (FWM) 


  1. Berrettini, G., Simi, A., Malacarne, A., Bogoni, A., Potí, L.: Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photonics Technol. Lett. 18, 917–919 (2006)CrossRefADSGoogle Scholar
  2. Chattopadhaya, T., Roy, J.N.: An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder. J. Opt. A: Pure Appl. Opt. (2009). doi: 10.1088/1464-4258/11/7/075501 Google Scholar
  3. Chattopadhyay, T., Reis, C., Andre, P., Teixeira, A.: IEEE Conference ICTON 1–4 (2011)Google Scholar
  4. Demir, H.V., Sabnis, V.A., Fidaner, O., Zheng, J.F., Harris, J.S., Miller, D.A.B.: Multifunctional integrated photonic switches. IEEE J. Sel. Top. Quantum Electron. 11, 86–96 (2005)CrossRefGoogle Scholar
  5. Kim, J.K., Kang, J.M., Kim, T.Y., Han, S.H.: All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. J. Lightwave Technol. 24, 3392–3399 (2006)CrossRefADSGoogle Scholar
  6. Kong, D., Li, Y., Wang, H., Zhang, X., Zhang, J., Wu, J., Lin, J.: All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 24, 988–990 (2012)ADSGoogle Scholar
  7. Lazzeri, E., Berrettini, G., Meloni, G., Bogoni, A., Potì, L.: N-bits all-optical circular shift register based on semiconductor optical amplifier buffer. Photonics West (2011)Google Scholar
  8. Raburn, M., Liu, B., Rauscher, K., Okuno, Y., Dagli, N., Bowers, J.E.: 3-D photonic circuit technology. IEEE J. Sel. Top. Quantum Electron. 8, 935–942 (2002)CrossRefGoogle Scholar
  9. Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: Designs of all-optical buffer and OR gate using SOA-MZI. Opt. Quantum Electron. (2013). doi: 10.1007/s11082-013-9856-0 Google Scholar
  10. Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: Design and analysis of all-optical AND, XOR and OR gates based on SOA–MZI configuration. Opt. Laser Tech. 66, 35–44 (2015)CrossRefADSGoogle Scholar
  11. Son, C.W., Kim, S.H., Byun, Y.T., Jhon, Y.M., Lee, S., Woo, D.H., Kim, S.H., Yoon, T.H.: Realisation of all-optical multi-functional logic gates using semiconductor optical amplifiers. Electron. Lett. 42, 1057–1058 (2006)CrossRefGoogle Scholar
  12. Suzuki, M., Uenohara, H.: Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s. Electron. Lett. 45, 224–225 (2009)CrossRefGoogle Scholar
  13. Tsiokos, D., Kehayas, E., Vyrsokinos, K., Houbanlis, T., Stampoulidis, L., Kanellos, G.T., Pleros, N., Guekos, G., Arramopoulos, H.: 10 Gb/s all-optical half-adder with interferometric SOA gates. IEEE Photonics Technol. Lett. 16, 284–286 (2004)CrossRefADSGoogle Scholar
  14. Wang, J., Meloni, G., Berrettini, G., Poti, L., Bogoni, A.: All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates. IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010)CrossRefGoogle Scholar
  15. Webb, R.P., Manning, R.J., Maxwell, G.D., Poustie, A.J.: 40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach–Zehnder interferometer. Electron. Lett. 39, 79–80 (2003)CrossRefGoogle Scholar
  16. Yin, Z., Jian-Ji, D., Lei, L., Liang, X.: Analysis of essential oil constituents from Tsaoko by GC-MS [J]. Chin. Phys. B 21, 1–6 (2012)CrossRefGoogle Scholar
  17. Zhang, M., Zhao, Y., Wang, L., Wang, J., Ye, P.: Design and analysis of all-optical XOR gate using SOA-based Mach–Zehnder interferometer. Opt. Commun. 223, 301–308 (2003)CrossRefADSGoogle Scholar
  18. Zhang, S., Li, Z., Liu, Y., Khoe, G.D., Dorren, H.J.S.: Optical shift register based on an optical flip-flop memory with a single active element. Opt. Express 13, 9708–9713 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pallavi Singh
    • 1
  • Ashutosh Kumar Singh
    • 1
  • Vanya Arun
    • 1
  • H. K. Dixit
    • 1
  1. 1.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia

Personalised recommendations