Bistable action with hybrid plasmonic Bragg-grating resonators

  • Thomas Christopoulos
  • Georgios Sinatkas
  • Odysseas Tsilipakos
  • Emmanouil E. Kriezis
Part of the following topical collections:
  1. Optical Wave & Waveguide Theory and Numerical Modelling 2015


Optical bistability with a hybrid silicon–plasmonic configuration consisting of a nonlinear Bragg-grating resonator side-coupled with a bus waveguide is theoretically investigated. The nonlinear response is studied with a modeling framework combining perturbation theory and temporal coupled-mode theory, fed with three-dimensional finite element method simulations. For the CW case, a general closed-form expression describing the nonlinear response is derived, valid for finite intrinsic quality factors and arbitrary coupling conditions. This generalization is necessary for studying plasmonic resonators which are inherently lossy. The effect of the parameters entering in the expression on the bistability curve is thoroughly investigated and the physical system is accordingly designed so as to exhibit minimum power threshold and an extinction ratio between bistable states exceeding 10 dB. Finally, the temporal dynamics are assessed. The system can toggle between bistable states in approximately 2 ps and is thus suitable for ultrafast memory/switching applications.


Nonlinear optics Optical bistability Plasmonics Hybrid plasmonic waveguides Bragg-grating resonators 



This work has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework: Research Funding Program THALES “Reinforcement of the interdisciplinary and/or inter-institutional research and innovation” (Project ANEMOS).


  1. Almeida, V.R., Lipson, M.: Optical bistability on a silicon chip. Opt. Lett. 29(20), 2387–2389 (2004)CrossRefADSGoogle Scholar
  2. Bian, Y., Gong, Q.: Long-range hybrid ridge and trench plasmonic waveguides. Appl. Phys. Lett. 104(25), 251115 (2014) CrossRefADSGoogle Scholar
  3. Bravo-Abad, J., Fan, S., Johnson, S., Joannopoulos, J.D., Soljačić, M.: Modeling nonlinear optical phenomena in nanophotonics. J. Lightw. Technol. 25(9), 2539–2546 (2007)CrossRefADSGoogle Scholar
  4. Esembeson, B., Scimeca, M.L., Michinobu, T., Diederich, F., Biaggio, I.: A high-optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater. 20(23), 4584–4587 (2008)CrossRefGoogle Scholar
  5. Fan, S., Suh, W., Joannopoulos, J.D.: Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20(3), 569–572 (2003)CrossRefADSGoogle Scholar
  6. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice-Hall, Englewood Cliffs, NJ (1984)Google Scholar
  7. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)CrossRefADSGoogle Scholar
  8. Kauranen, M., Zayats, A.V.: Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012)CrossRefADSGoogle Scholar
  9. Ketzaki, D.A., Tsilipakos, O., Yioultsis, T.V., Kriezis, E.E.: Electromagnetically induced transparency with hybrid silicon–plasmonic traveling-wave resonators. J. Appl. Phys. 114(11), 113107 (2013)CrossRefADSGoogle Scholar
  10. Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R., Esembeson, B., Biaggio, I., Michinobu, T., Diederich, F., Freude, W., Leuthold, J.: All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics 3(4), 216–219 (2009)CrossRefADSGoogle Scholar
  11. Kriesch, A., Ploss, D., Wen, J., Banzer, P., Peschel, U.: Nonlinear effects in subwavelength plasmonic directional couplers. In: CLEO 2012: Conference on Lasers and Electro-Optics, paper 6327055 (2012) Google Scholar
  12. Ma, W., Helmy, A.S.: Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures. J. Opt. Soc. Am. B 31(7), 1723–1729 (2014)CrossRefGoogle Scholar
  13. Milián, C., Skryabin, D.V.: Nonlinear switching in arrays of semiconductor on metal photonic wires. Appl. Phys. Lett. 98(11), 111104 (2011)CrossRefADSGoogle Scholar
  14. Pannipitiya, A., Rukhlenko, I.D., Premaratne, M.: Analytical theory of optical bistability in plasmonic nanoresonators. J. Opt. Soc. Am. B 28(11), 2820–2826 (2011)CrossRefADSGoogle Scholar
  15. Pitilakis, A., Kriezis, E.E.: Highly nonlinear hybrid silicon–plasmonic waveguides: analysis and optimization. J. Opt. Soc. Am B 30(7), 1954–1965 (2013)CrossRefADSGoogle Scholar
  16. Pitilakis, A., Tsilipakos, O., Kriezis, E.E.: Nonlinear effects in hybrid plasmonic waveguides. In: ICTON 2012: 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper 6254436 (2012)Google Scholar
  17. Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley, New York (2005)Google Scholar
  18. Shiu, R.C., Lan, Y.C., Guo, G.Y.: Optical multiple bistability in metal–insulator–metal plasmonic waveguides side-coupled with twin racetrack resonators. J. Opt. Soc. Am. B 31(11), 2581–2586 (2014)CrossRefADSGoogle Scholar
  19. Soljačić, M., Ibanescu, M., Johnson, S.G., Fink, Y., Joannopoulos, J.D.: Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66(5), 055601 (2002)ADSGoogle Scholar
  20. Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., Kuramochi, E.: Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt. Lett. 30(19), 2575–2577 (2005)CrossRefADSGoogle Scholar
  21. Tsilipakos, O., Kriezis, E.E.: Optical bistability with hybrid silicon–plasmonic disk resonators. J. Opt. Soc. Am. B 31(7), 1698–1705 (2014)CrossRefADSGoogle Scholar
  22. Tsilipakos, O., Pitilakis, A., Tasolamprou, A.C., Yioultsis, T.V., Kriezis, E.E.: Computational techniques for the analysis and design of dielectric-loaded plasmonic circuitry. Opt. Quantum Electron. 42(8), 541–555 (2011)CrossRefGoogle Scholar
  23. Wang, G., Lu, H., Liu, X., Gong, Y., Wang, L.: Optical bistability in metal–insulator–metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl. Opt. 50(27), 5287–5290 (2011)CrossRefADSGoogle Scholar
  24. Wu, M., Han, Z., Van, V.: Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt. Express 18(11), 11728–11736 (2010)CrossRefADSGoogle Scholar
  25. Xiang, Y., Cai, W., Wang, L., Ying, C., Zhang, X., Xu, J.: Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides. J. Opt. 16(2), 025003 (2014)CrossRefADSGoogle Scholar
  26. Xu, P., Shi, Y.: High Q/V hybrid plasmonic photonic crystal nanobeam cavity: towards low threshold nanolasers application. Opt. Commun. 311, 234–238 (2013)CrossRefADSGoogle Scholar
  27. Xu, Q., Lipson, M.: All-optical logic based on silicon micro-ring resonators. Opt. Express 15(3), 924–929 (2007)CrossRefADSGoogle Scholar
  28. Yanik, M.F., Fan, S., Soljačić, M.: High-contrast all-optical bistable switching in photonic crystal microcavities. Appl. Phys. Lett. 83(14), 2739–2741 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thomas Christopoulos
    • 1
  • Georgios Sinatkas
    • 1
  • Odysseas Tsilipakos
    • 1
  • Emmanouil E. Kriezis
    • 1
  1. 1.Department of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations