Photoresponse characteristics from computationally efficient dynamic model of uni-traveling carrier photodiode

  • Senjuti Khanra
  • Abhirup Das Barman
Part of the following topical collections:
  1. 2015 Conference on “Numerical Simulation of Optoelectronic Devices”


A time domain model of bulk InGaAs/InP uni-traveling carrier photodiode is developed in terms of coupled differential equations of incident photon flux and photo generated carrier density rates. For fast computation of model parameters linear approximation of material absorption coefficient is made with carrier density. Wavelength and bias voltage dependent responsivity is well demonstrated by the model and their values at different absorption layer widths agree well with the experimental results. Optical power induced output photocurrent saturation is also explained. Furthermore, from the temporal variation of output photocurrent, estimation of device bandwidth is shown.


Carrier density Responsivity Photodiodes 



The work is undertaken as part of Information Technology Research Academy (ITRA), Media Lab Asia project entitled “Mobile Broadband Service Support over Cognitive Radio Networks”. Author would like to thank the anonymous reviewer for his suggestions to improve the manuscript.


  1. Adachi, S.: Properties of Semiconductor Alloys Group-IV, III-V and II-VI Semiconductors, pp. 378–379. Wiley, UK (2009)Google Scholar
  2. Chtioui, M., Enard, A., Carpentier, D., Bernard, S., Rousseau, B., Lelarge, F., Pommereau, F., Achouche, M.: High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links. IEEE Photon. Tech. Lett. 20(3), 202–204 (2008a)CrossRefADSGoogle Scholar
  3. Chtioui, M., Enard, A., Carpentier, D., Bernard, S., Rousseau, B., Lelarge, F., Pommereau, F., Achouche, M.: High-performance uni-traveling-carrier photodiodes with a new collector design. IEEE Photon. Tech. Lett. 20(13), 1163–1165 (2008b)CrossRefADSGoogle Scholar
  4. Coleman, P.D., Eden, R.C., Weaver, J.N.: Mixing and detection of coherent light in a bulk photoconductor. IEEE Trans. Electron. Devices 11(11), 488–497 (1964)CrossRefGoogle Scholar
  5. Connelly, M.J.: Semiconductor Optical Amplifiers, pp. 45–71. Kluwer Academic, Boston (2002)Google Scholar
  6. Fawcett, W., Herbert, D.C.: High-field transport in gallium arsenide and indium phosphide. J. Phys. C Solid State Phys. 7, 1641–1654 (1974)CrossRefADSGoogle Scholar
  7. Guegos, G. (ed.): Photonic Devices for Telecommunications: How to Model and Measure, pp. 171–172. Springer, New York (1998)Google Scholar
  8. Ishibashi, T., Furuta, T., Fushimi, H., Kodama, S., Ito, H., Nagatsuma, T., Shimizu, N., Miyamoto, Y.: InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E83-C(6), 938–949 (2000)Google Scholar
  9. Ishibashi, T., Furuta, T., Fushimi, H., Ito, H.: Photoresponse characteristicsof uni-traveling-carrier photodiodes. Proc. SPIE, Phys. Simul. Optoelectron. Devices IX, San Jose 4283, 469–479 (2001)ADSGoogle Scholar
  10. Ito, H., Furuta, T., Kodama, S., Ishibashi, T.: Zero-bias high-speed and high-output voltage operation of cascade-twin uni-traveling-carrier photodiode. IEEE Electron. Lett. 36(24), 2034–2036 (2003)CrossRefGoogle Scholar
  11. Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP–InGaAs uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electronics 10(4), 709–727 (2004)CrossRefGoogle Scholar
  12. Khanra, S., Das Barman, A.: Circuit model of UTC-PD with high power and enhanced bandwidth technique. Opt. Quantum Electron. 47(6), 1397–1405 (2014)CrossRefGoogle Scholar
  13. Rees, H.D., Gray, K.W.: Indium phosphide: a semiconductor for microwave devices. Solid-State Electron. Devices 1(1), 1–8 (1976)CrossRefADSGoogle Scholar
  14. Shimizu, N., Miyamoto, Y., Hirano, A., Sato, K., Ishibashi, T.: RF saturation mechanism of InP/lnGaAs unitravelling-carrier photodiode. Electron. Lett. 36(8), 750–751 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Radio Physics and ElectronicsUniversity of CalcuttaKolkataIndia
  2. 2.ITRA Project “Mobile Broadband Service Support Over Cognitive Radio Networks”, IRPE-CUKolkataIndia

Personalised recommendations