Advertisement

LD pumped passively Q-switched ceramic Nd:YAG 946 nm laser with a high peak power output

  • Deying Chen
  • Hu Pan
  • Renpeng Yan
  • Xin Yu
  • Jiang Li
  • Yufei Ma
  • Xudong Li
  • Yubai Pan
  • Jing Gao
Article

Abstract

A compact multi-kilohertz, high-peak-power laser-diode end-pumped Nd:YAG ceramic quasi-three-level 946 nm laser is demonstrated. The maximum output power of 2.3 W is obtained in continuous-wave ceramic Nd:YAG 946 nm laser under the pump power (Pin) of 14.2 W. A Cr4+:YAG with an initial transmissivity of 92 % at 946 nm is utilized as saturable absorber in passively Q-switched laser. The average power of passively Q-switched 946 nm laser reaches 0.96 W with an optical-to-optical efficiency of 6.7 %. The pulse repetition frequency increases linearly with pump power and peaks at 8.2 kHz. The pulse width does not vary obviously versus pump power and the shortest pulse width of 946 nm laser is 13.0 ns. The output peak power is estimated to be 12.4 kW, much higher than previous results in pulsed ceramic Nd:YAG 946 nm laser.

Keywords

LD-pumped Passively Q-switched Ceramic Nd:YAG 946 nm Laser 

Notes

Acknowledgments

This work was supported by the National Key Scientific Instrument and Equipment Development Projects of China (No. 2012YQ04016401), the Fundamental Research Funds for Central Universities (Grant No. HIT. NSRIF. 2015044 and 201165), General Financial Grant from the China Postdoctoral Science Foundation (Grant Nos. 2015M80263, 2014M560262 and 2013M531040), Special Financial Grant from the China Postdoctoral Science Foundation (No. 2014T70336 and 2015T80350), Postdoctoral Fellowship in Heilongjiang Province (No. LBHZ13081 and LBH-Z14074), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015011), National Natural Science Foundation of China (NSFC) (61405236 and 50990301).

References

  1. Axenson, T., Barnes, N., Reichle, D.: 946 nm Diode pumped laser produces 100 mJ. Proc. SPIE 4153, 78–85 (2000)CrossRefADSGoogle Scholar
  2. Chen, F., Yu, X., Yan, R., Li, X., Wang, C., Yu, J., Zhang, Z.: High-repetition-rate, high-peak-power linear-polarized 473 nm Nd:YAG/BiBO blue laser by extracavity frequency-doubling. Opt. Lett. 35, 2714–2716 (2010)CrossRefADSGoogle Scholar
  3. Cho, C., Lee, C., Chang, C., Tuan, P., Huang, K., Chen, Y.: 24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%. Opt. Exp. 23, 10126–10131 (2015)CrossRefADSGoogle Scholar
  4. Fan, T., Byer, R.: Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser. IEEE J. Quantum Electron. 23, 605–612 (1987)CrossRefADSGoogle Scholar
  5. Gao, J., Yu, X., Chen, F., Li, X., Zhang, K., Yu, J., Wang, Y.: 12.0-W continuous-wave diode-end-pumped Nd:GdVO4 laser with high brightness operating at 912-nm. Opt. Exp. 17, 3574–3580 (2009)CrossRefADSGoogle Scholar
  6. Gong, W., Gong, M., Liu, Q., Lu, F.: Analysis of transverse mode formation in quasi-three-level microchip lasers. Opt. Quantum Electron. 37, 1109–1120 (2005)CrossRefGoogle Scholar
  7. Guy, S., Bonner, C.L., Shepherd, D.P., Hanna, D.C., Tropper, A.C., Ferrand, B.: High-inversion densities in Nd:YAG: upconversion and bleaching. IEEE J. Quantum Electron 34, 900–909 (1998)CrossRefADSGoogle Scholar
  8. Huang, Y., Chang, F.: Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers. Opt. Commun. 256, 381–393 (2005)CrossRefADSGoogle Scholar
  9. Ikesue, A., Aung, Y.L.: Ceramic laser materials. Nat. Photon. 21, 721–727 (2008)CrossRefADSGoogle Scholar
  10. Kaminskii, A.: Laser crystals and ceramics: recent advances. Laser Photon. Rev. 1, 93–177 (2007)CrossRefGoogle Scholar
  11. Koechner, W.: Solid–State Laser Engineering, 5th edn. Springer, New York (1999)CrossRefMATHGoogle Scholar
  12. Li, P., Zhang, H., Chen, X., Wang, Q.: Diode-pumped Nd:YAG ceramic laser at 946 nm passively Q-switched with a Cr4+:YAG saturable absorber. Opt. Laser Tech. 44, 578–581 (2012)CrossRefADSGoogle Scholar
  13. Li, J., Pan, Y., Zeng, Y., Liu, W., Jiang, B., Guo, J.: The history, development, and future prospects for laser ceramic: a review. Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013)CrossRefGoogle Scholar
  14. Li, S., Li, G., Zhao, S., Wang, M., Yang, K., Li, C., Qiao, W., Zhang, H., Feng, T., Chu, H.: Passively Q-switched laser performance of a composite Nd:YVO4/Nd:YVO4/Nd:YVO4 crystal with GaAs saturable absorber. Opt. Quantum Electron. 46, 1179–1186 (2014)CrossRefGoogle Scholar
  15. Liu, J., Ozygus, B., Yang, S., Erhard, J., Seeling, U., Ding, A., Weber, H.: Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+: YAG saturable absorber. J. Opt. Soc. Am. B 20, 652–661 (2003)CrossRefADSGoogle Scholar
  16. Liu, F., Xia, H., Pan, S., Gao, W., Ran, D., Sun, S., Ling, Z., Zhang, H., Zhao, S., Wang, J.: Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber Opt. Laser Tech. 39, 1449–1453 (2007)CrossRefGoogle Scholar
  17. Lu, J., Ueda, K., Yagi, H., Yanagitani, T., Akiyama, Y., Kaminskii, A.: Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J. Alloys Comp. 341, 220–225 (2002)CrossRefGoogle Scholar
  18. Ma, Y., Yu, X., Tittel, F., Yan, R., Li, X., Wang, C., Yu, J.: Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal. Appl. Phys. B 107, 339–342 (2012)CrossRefADSGoogle Scholar
  19. Mackenzie, J.: An efficient high-power 946 nm Nd:YAG planar waveguide laser. Appl. Phys. B 97, 297–306 (2009)CrossRefADSGoogle Scholar
  20. Ng, S., Mackenzie, J.: Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser. Laser Phys. 22, 494–498 (2012)CrossRefADSGoogle Scholar
  21. Shen, D., Li, C., Song, J., Kobayashi, T., Ueda, K.: Diode-pumped Nd:S-VAP lasers passively Q-switched with Cr4+:YAG saturable absorber. Opt. Commun. 169, 109–113 (1999)CrossRefADSGoogle Scholar
  22. Spühler, G., Paschotta, R., Fluck, R., Braun, B., Moser, M., Zhang, G., Gini, E., Keller, U.: Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B. 16, 376–388 (1999)CrossRefADSGoogle Scholar
  23. Strohmaier, S., Eichler, H., Bisson, J., Yagi, H., Takaichi, K., Ueda, K., Yanagitani, T., Kaminskii, A.: Ceramic Nd:YAG laser at 946 nm. Laser Phys. Lett. 2, 383–386 (2005)CrossRefADSGoogle Scholar
  24. Yan, R., Yu, X., Ma, Y., Li, X., Chen, D., Yu, J.: High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd:YAG 946 nm laser. Opt. Commun. 285, 4462–4465 (2012)CrossRefADSGoogle Scholar
  25. Yao, W., Gao, J., Zhang, L., Li, J., Tian, Y., Ma, Y., Wu, X., Ma, G., Yang, J., Pan, Y., Dai, X.: Continuous-wave yellow–green laser at 0.56 μm based on frequency doubling of a diode-end-pumped ceramic Nd:YAG laser. Appl. Opt. 54, 5817–5821 (2015)CrossRefADSGoogle Scholar
  26. Zang, Z., Minato, T., Navaretti, P., Hinokuma, Y., Duelk, M., Velez, C., Hamamoto, K.: High-power (>100 mW) superluminescent diodes by using active multimode interferometer. IEEE Photon. Tech. Lett. 22, 721–723 (2010)CrossRefADSGoogle Scholar
  27. Zang, Z., Mukai, K., Navaretti, P., Duelk, M., Velez, C.: Hamamoto K: Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer. Appl. Phys. Lett. 100, 031108 (2012)CrossRefADSGoogle Scholar
  28. Zayhowski, J., Dill, C.: Diode-pumped passively q-switched picosecond microchip lasers. Opt. Lett. 19, 1427–1429 (1994)CrossRefADSGoogle Scholar
  29. Zhang, X., Ju, Y., Wang, Y.: Theoretical and experimental investigation of actively Q-switched Tm, Ho:YLF lasers. Opt. Exp. 14, 7745–7750 (2006)CrossRefADSGoogle Scholar
  30. Zhang, C., Zhang, X., Wang, Q., Cong, Z., Fan, S., Chen, X., Liu, Z., Zhang, Z.: Diode-pumped Q-switched 946 nm Nd:YAG ceramic laser. Laser Phys. Lett. 6, 521–525 (2009)CrossRefADSGoogle Scholar
  31. Zhou, R., Li, E., Li, H., Wang, P., Yao, J.: Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm. Opt. Lett. 31, 1869–1871 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Deying Chen
    • 1
  • Hu Pan
    • 1
  • Renpeng Yan
    • 1
  • Xin Yu
    • 1
  • Jiang Li
    • 2
  • Yufei Ma
    • 1
  • Xudong Li
    • 1
  • Yubai Pan
    • 2
  • Jing Gao
    • 3
  1. 1.National Key Laboratory of Science and Technology on Tunable LaserHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Transparent and Opto-Functional Advanced Inorganic Materials, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  3. 3.Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouChina

Personalised recommendations