Skip to main content
Log in

A barrier structure optimization for widening processing window in dual-band HgCdTe IRFPAs detectors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Dual-band HgCdTe IRFPAs detectors are one of the most important developing frontiers for 3rd generation IRFPAs detectors. A barrier structure has been implemented in the dual-band HgCdTe detectors to restrain the electrical cross-talk between two layers with different compositions. Moreover, we now reveal another benefit of this barrier structure. This barrier can relieve the critical demands in photo-lithography of the implantation process, which shows great advantages as the dimension of a single element in advanced dual-band IRFPAs detectors is becoming less than 30 μm. When the implantation pattern migrates, the profile of the cavity in the dual-band structure is exposed under implantation. An n-type connection between LW layer and MW layer will be induced. With a modified barrier, the dark current of the MW contact can be reduced to the same order as those with precise implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belas, E., Hoschl, P., Grill, R., Franc, J., Moravec, P., Lischka, K., Sitter, H., Toth, A.: Deep P-N-Junction in Hg1−xCdxTe created by ion milling. Semicond. Sci. Technol. 8(9), 1695–1699 (1993). doi:10.1088/0268-1242/8/9/003

    Article  ADS  Google Scholar 

  • Bellotti, E., D’Orsogna, D.: Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors. IEEE J Quantum Elect. 42(3–4), 418–426 (2006). doi:10.1109/JQE.2006.871555

    Article  ADS  Google Scholar 

  • Destefanis, G.L.: Electrical doping of HgCdTe by ion-implantation and heat-treatment. J. Cryst. Growth 86(1–4), 700–722 (1988). doi:10.1016/0022-0248(90)90798-P

    Article  ADS  Google Scholar 

  • Gopal, V., Qiu, W.C., Hu, W.D.: Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors. J. Appl. Phys. 116(18), 184503 (2014). doi:10.1063/1.4901289

    Article  ADS  Google Scholar 

  • Itsuno, A.M., Phillips, J.D., Velicu, S.: Design and modeling of HgCdTe nBn detectors. J. Electron. Mater. 40(8), 1624–1629 (2011). doi:10.1007/s11664-011-1614-0

    Article  ADS  Google Scholar 

  • Kinch, M.A.: HgCdTe: recent trends in the ultimate IR semiconductor. J. Electron. Mater. 39(7), 1043–1052 (2010). doi:10.1007/s11664-010-1087-6

    Article  ADS  Google Scholar 

  • Kopytko, M.: Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers. Infrared Phys. Technol. 64, 47–55 (2014). doi:10.1016/j.infrared.2014.01.015

    Article  ADS  Google Scholar 

  • Kopytko, M., Keblowski, A., Gawron, W., Madejczyk, P., Kowalewski, A., Jozwikowski, K.: High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD. Opto-Electron. Rev. 21(4), 402–405 (2013). doi:10.2478/s11772-013-0101-y

    Article  ADS  Google Scholar 

  • Kopytko, M., Wróbel, J., Jóźwikowski, K., Rogalski, A., Antoszewski, J., Akhavan, N.D., Umana-Membreno, G.A., Faraone, L., Becker, C.R.: Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J. Electron. Mater. 44(1), 158–166 (2014). doi:10.1007/s11664-014-3511-9

    Article  ADS  Google Scholar 

  • Li, Y., Ye, Z.H., Lin, C., Hu, X.N., Ding, R.J., He, L.: Parameter determination from current-voltage characteristics of HgCdTe photodiodes in forward bias region. Opt. Quant. Electron. 45(7), 641–648 (2013). doi:10.1007/s11082-012-9642-4

    Article  Google Scholar 

  • Martyniuk, P., Rogalski, A.: MWIR barrier detectors versus HgCdTe photodiodes. Infrared Phys. Technol. 70, 125–128 (2015). doi:10.1016/j.infrared.2014.09.026

    Article  Google Scholar 

  • Musca, C.A., Antoszewski, J., Dell, J.M., Faraone, L., Terterian, S.: Planar p-on-n HgCdTe heterojunction mid-wavelength infrared photodiodes formed using plasma-induced junction isolation. J. Electron. Mater. 32(7), 622–626 (2003). doi:10.1007/s11664-003-0042-1

    Article  ADS  Google Scholar 

  • Qiu, W.C., Hu, W.D.: Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China-Phys. Mech. Astron. 58(2), 027001 (2015). doi:10.1007/s11433-014-5627-6

    Article  Google Scholar 

  • Qiu, W.C., Hu, W.D., Lin, T., Cheng, X.A., Wang, R., Yin, F., Zhang, B., Chen, X.S., Lu, W.: Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope. Appl. Phys. Lett. 105(19), 191106 (2014). doi:10.1063/1.4901529

    Article  ADS  Google Scholar 

  • Qiu, W.C., Hu, W.D., Chen, L., Lin, C., Cheng, X.A., Chen, X.S., Lu, W.: Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Trans. Electron Devices 62(6), 1926–1931 (2015). doi:10.1109/TED.2015.2417193

    Article  ADS  Google Scholar 

  • Rogalski, A., Antoszewski, J., Faraone, L.: Third-generation infrared photodetector arrays. J. Appl. Phys. 105(9), 091101 (2009). doi:10.1063/1.3099572

    Article  ADS  Google Scholar 

  • Smith, E.P.G., Musca, C.A., Redfern, D.A., Dell, J.M., Faraone, L.: Reactive ion etching for mesa structuring in HgCdTe. J. Vac. Sci. Technol. A 17(5), 2503–2509 (1999). doi:10.1116/1.581988

    Article  ADS  Google Scholar 

  • Yang, K.D., Choi, J.H., Bae, S.H., Lee, H.C.: Junction formation by hydrogenation for HgCdTe diodes. Proc. SPIE. 4369, 412–418 (2001). doi:10.1117/12.445305

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Ye.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 15.

Guest Edited by Julien Javaloyes, Weida Hu, Slawek Sujecki and Yuh-Renn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ye, Z., Zhang, P. et al. A barrier structure optimization for widening processing window in dual-band HgCdTe IRFPAs detectors. Opt Quant Electron 48, 294 (2016). https://doi.org/10.1007/s11082-015-0359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0359-z

Keywords

Navigation