Synthesis and investigating of electrical, magnetical, optical and morphology properties of semicontinuous metallic nanostructures



The paper focuses on the electrical, magnetical and morphology characterization of Ag/Zr0.9Ni0.1Oy (AZNx) nanostructures with different atomic ratios “x” (where “x” is 0, 5, and 25 %). The structure and morphology properties of the AZNx nanostructures were evaluated by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. Here, a negative permittivity behavior of AZN25 % is found. The complex permeability of AZN25 % presents negative susceptibility (\(\mu\prime\) < 1).


SNG Tunable metamaterials Ag/Zr0.9Ni0.1Oy nanostructures 


  1. Anantha Ramakrishna, S.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449 (2005)CrossRefADSGoogle Scholar
  2. Cai, W., Shalaev, V.: Optical Metamaterials Fundamentals and Applications, 1st edn. Springer, New York (2010)Google Scholar
  3. Chui, S.T., Hu, L.: Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys. Rev. B 65, 144407 (2002)CrossRefADSGoogle Scholar
  4. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRefADSGoogle Scholar
  5. He, G., Wu, R.-X., Poo, Y., Chen, P.: Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh. J. Appl. Phys. 107, 093522 (2010)CrossRefADSGoogle Scholar
  6. Hou, Q., Yan, K.L., Fan, R.H., Zhang, Z.D., Chen, M., Sun, K., Cheng, C.B.: Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites. RSC Adv. 5, 9472–9475 (2015)CrossRefGoogle Scholar
  7. Houck, A.A., Brock, J.B., Chuang, I.L.: Experimental observations of a left-handed material that obeys Snell’s law. Phys. Rev. Lett. 90, 137401 (2003)CrossRefADSGoogle Scholar
  8. Jauncey, G.E.M., Pennell, F.: Scattering of X-rays from powdered crystals. Phys. Rev. B 43, 505 (1933)CrossRefADSMATHGoogle Scholar
  9. Koschny, T., Markoš, P., Economou, E.N., Smith, D.R., Vier, D.C., Soukoulis, C.M.: Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials. Phys. Rev. B 71, 245105 (2005)CrossRefADSGoogle Scholar
  10. Lagarkov, A.N., Sarychev, A.K.: Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B 53, 6318 (1996)CrossRefADSGoogle Scholar
  11. Li, B., Sui, G., Zhong, W.H.: Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176–4180 (2009)CrossRefGoogle Scholar
  12. Liu, C.D., Lee, S.N., Ho, C.H., Han, J.L., Hsieh, K.H.: Electrical properties of well-dispersed nanopolyaniline/epoxy hybrids prepared using an absorption-transferring process. J. Phys. Chem. C 112, 15956–15960 (2008)CrossRefGoogle Scholar
  13. Monette, L., Anderson, M.P., Grest, G.S.: Effect of volume fraction and morphology of reinforcing phases in composites. J. Appl. Phys. 75, 1155–1170 (1994)CrossRefADSGoogle Scholar
  14. Parazzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C., Tanielian, M.: Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett. 90, 107401 (2003)CrossRefADSGoogle Scholar
  15. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  16. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)CrossRefADSMathSciNetMATHGoogle Scholar
  17. Shalaev, V.M., Cai, W.S., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V.: Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005)CrossRefADSGoogle Scholar
  18. Smith, D.R., Padilla, W.J., Vier, D.C., Nasser, S.C.N., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)CrossRefADSGoogle Scholar
  19. Sounas, D.L., Kantartzis, N.V.: Systematic surface wave analysis of the interfaces of composite DNG/SNG media. Opt. Express 17, 8513–8524 (2009)CrossRefADSGoogle Scholar
  20. Sun, K., Zhang, Z.D., Fan, R.H., Chen, M., Cheng, C.B., Hou, Q., Zhang, X.H., Liu, Y.: Random copper/yttrium iron garnet composites with tunable negative electromagnetic parameters prepared by in situ synthesis. RSC Adv. 5, 61155–61160 (2015)CrossRefGoogle Scholar
  21. Tsakmakidis, K.L., Hermann, C., Klaedtke, A., Jamois, C., Hess, O.: Surface Plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability. Phys. Rev. B 73, 085104 (2006)CrossRefADSGoogle Scholar
  22. Tsutaoka, T., Kasagi, T., Yamamoto, S., Hatakeyama, K.: Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl. Phys. Lett. 102, 181904 (2013a)CrossRefADSGoogle Scholar
  23. Tsutaoka, T., Fukuyama, K., Kinoshita, H., Kasagi, T., Yamamoto, S., Hatakeyama, K.: Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl. Phys. Lett. 103, 261906 (2013b)CrossRefADSGoogle Scholar
  24. Yan, K.L., Fan, R.H., Shi, Z.C., Chen, M., Qian, L., Wei, Y.L., Sun, K., Li, J.: Negative permittivity behavior and magnetic performance of perovskite La1−xSrxMnO3 at high-frequency. J. Mater. Chem. C 2, 1028–1033 (2014)CrossRefGoogle Scholar
  25. Yao, J., Wang, Y., Tsai, K.-T., Liu, Z., Yin, X., Bartal, G., Stacy, A.M., Wang, Y.-L., Zhang, X.: Design, fabrication and characterization of indefinite metamaterials of nanowires. Phil. Trans. R. Soc. A 369, 3434–3446 (2011)CrossRefADSGoogle Scholar
  26. Zhang, S., Fan, W.J., Panoiu, N.C., Malloy, K.J., Osgood, R.M., Brueck, S.R.J.: Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005)CrossRefADSGoogle Scholar
  27. Zhang, Z.D., Fan, R.H., Shi, Z.C., Pan, S.B., Yan, K.L., Sun, K.N., Zhang, J.D., Liu, X.F., Wang, X.L., Dou, S.X.: Tunable negative permittivity behavior and conductor-insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013)CrossRefGoogle Scholar
  28. Zhao, H., Kang, L., Zhou, J., Zhao, Q., Li, L., Peng, L., Bai, Y.: Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial. Appl. Phys. Lett. 93, 201106 (2008)CrossRefADSGoogle Scholar
  29. Zhou, J., Zhang, L., Tuttle, G., Koschny, T., Soukoulis, C.M.: Negative index materials using simple short wire pairs. Phys. Rev. B 73, 041101R (2006)CrossRefADSGoogle Scholar
  30. Zhu, J.H., Wei, S.Y., Zhang, L., Mao, Y.B., Ryu, J., Mavinakuli, P., Karki, A.B., Young, D.P., Guo, Z.H.: Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J. Phys. Chem. C 114, 16335–16342 (2010)CrossRefGoogle Scholar
  31. Zhu, J.H., Wei, S.Y., Haldolaarachchige, N., He, J., Young, D.P., Guo, Z.H.: Very large magnetoresistive graphene disk with negative permittivity. Nanoscale 4, 152–156 (2014)CrossRefADSGoogle Scholar
  32. Ziolkowski, R.W., Erentok, A.: Metamaterial-based efficient electrically small antennas. IEEE Trans. Antennas Propag. 54, 2113–2130 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Solid State PhysicsUniversity of MazandaranBabolsarIran

Personalised recommendations