Reflectance spectra recovery from tristimulus values by extraction of color feature match

  • Guangyuan Wu
  • Xiaoying Shen
  • Zhen Liu
  • Shengwei Yang
  • Ming Zhu


A procedure for recovering spectral reflectance from CIE tristimulus values is presented using a modified pseudo-inverse method. Unlike previous spectral recovery methods, this approach uses a new sample selection criterion based on color feature match to select a series of suitable samples for creating the adapted transformation matrix to reconstruct spectra reflectance. Taking into account the computational time and accuracy, the dynamic subgroups were created by dividing the spectral reflectance preliminarily, and the adapted subsets were created by the sample similarity/dissimilarity between samples in the dynamic subgroup and target sample. Consequently, instead of applying only one transformation matrix for the reconstruction process, a series of adapted transformation matrices were obtained from the adapted subsets using color feature match. Three different datasets of spectral reflectance and three different error metrics have been applied in this study. According to all the error metrics considered, the proposed method is quite accurate and outperforms the Pseudo-Inverse method and the weighted Pseudo-Inverse method, which is effective in reconstructing spectral reflectance.


Reflectance Spectrum reconstruction Pseudo-inverse estimation Color feature match 



This study is supported by the National Natural Science Foundation of China (No. 61301231), Shanghai Young Teachers' Training Program (no.ZZslg15090) and the Innovation Fund Project for Graduate Student of Shanghai (No. JWCXSL1401).


  1. Abed, F.M., Amirshahi, S.H., Abed, M.R.M.: Reconstruction of reflectance data using an interpolation technique. JOSA A 26(3), 613–624 (2009)CrossRefADSGoogle Scholar
  2. Agahian, F., Amirshahi, S.A., Amirshahi, S.H.: Reconstruction of reflectance spectra using weighted principal component analysis. Color Res. Appl. 33(5), 360–371 (2008). doi: 10.1002/col.20431 CrossRefGoogle Scholar
  3. Amiri, M.M., Amirshahi, S.H.: A hybrid of weighted regression and linear models for extraction of reflectance spectra from CIEXYZ tristimulus values. Opt. Rev. 21(6), 816–825 (2014)CrossRefGoogle Scholar
  4. Ansari, K., Amirshahi, S.H., Moradian, S.: Recovery of reflectance spectra from CIE tristimulus values using a progressive database selection technique. Color. Technol. 122(3), 128–134 (2006). doi: 10.1111/j.1478-4408.2006.00019.x CrossRefGoogle Scholar
  5. Ayala, F., Echávarri, J.F., Renet, P., Negueruela, A.I.: Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors. J. Opt. Soc. Am. A 23(8), 2020–2026 (2006). doi: 10.1364/JOSAA.23.002020 CrossRefADSGoogle Scholar
  6. Babaei, V., Amirshahi, S.H., Agahian, F.: Using weighted pseudo-inverse method for reconstruction of reflectance spectra and analyzing the dataset in terms of normality. Color Res. Appl. 36(4), 295–305 (2011)CrossRefGoogle Scholar
  7. Dupont, D.: Study of the reconstruction of reflectance curves based on tristimulus values: comparison of methods of optimization. Color Res. Appl. 27(2), 88–99 (2002). doi: 10.1002/col.10031 CrossRefMathSciNetGoogle Scholar
  8. Fairman, H.S., Brill, M.H.: The principal components of reflectances. Color Res. Appl. 29(2), 104–110 (2004). doi: 10.1002/col.10230 CrossRefGoogle Scholar
  9. García-Beltrán, A., Nieves, J.L., Hernández-Andrés, J., Romero, J.: Linear bases for spectral reflectance functions of acrylic paints. Color Res. Appl. 23(1), 39–45 (1998). doi: 10.1002/(SICI)1520-6378(199802)23:1<39:AID-COL6>3.0.CO;2-4 CrossRefGoogle Scholar
  10. Harifi, T., Amirshahi, S.H., Agahian, F.: Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique. Opt. Rev. 15(6), 302–308 (2008)CrossRefGoogle Scholar
  11. Kim, B.G., Han, J.-W., Park, S.-B.: Spectral reflectivity recovery from the tristimulus values using a hybrid method. JOSA A 29(12), 2612–2621 (2012)CrossRefADSGoogle Scholar
  12. Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., Goetz, A.F.H.: The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2–3), 145–163 (1993). doi: 10.1016/0034-4257(93)90013-N CrossRefGoogle Scholar
  13. Lee, C.-H., Park, K.-H., Ha, Y.-H., Kwon, O.-S.: Surface reflectance estimation using the principal components of similar colors. J. Imaging Sci. Technol. 51(2), 166–174 (2007)CrossRefGoogle Scholar
  14. Pelagotti, A., Del Mastio, A., De Rosa, A., Piva, A.: Multispectral imaging of paintings. Signal Process. Mag. IEEE 25(4), 27–36 (2008). doi: 10.1109/MSP.2008.923095 CrossRefADSGoogle Scholar
  15. Schettini, R., Zuffi, S.: A computational strategy exploiting genetic algorithms to recover color surface reflectance functions. Neural Comput. Appl. 16(1), 69–79 (2007). doi: 10.1007/s00521-006-0049-7 CrossRefGoogle Scholar
  16. Spectral Database: University of Eastern Finland.
  17. Tzeng, D.-Y., Berns, R.S.: A review of principal component analysis and its applications to color technology. Color Res. Appl. 30(2), 84–98 (2005). doi: 10.1002/col.20086 CrossRefGoogle Scholar
  18. Valero, E.M., Nieves, J.L., Nascimento, S.M.C., Amano, K., Foster, D.H.: Recovering spectral data from natural scenes with an RGB digital camera and colored filters. Color Res. Appl. 32(5), 352–360 (2007). doi: 10.1002/col.20339 CrossRefGoogle Scholar
  19. Vrhel, M.J., Gershon, R., Iwan, L.S.: Measurement and analysis of object reflectance spectra. Color Res. Appl. 19(1), 4–9 (1994). doi: 10.1111/j.1520-6378.1994.tb00053.x Google Scholar
  20. Zhang, L., Liang, D., Pan, Z., Ma, X.: Study on the key technology of reconstruction spectral reflectance based on the algorithm of compressive sensing. Opt. Quantum Electron. 47(7), 1679–1692 (2015). doi: 10.1007/s11082-014-0025-x CrossRefGoogle Scholar
  21. Zhang, W.-F., Dai, D.-Q.: Spectral reflectance estimation from camera responses by support vector regression and a composite model. JOSA A 25(9), 2286–2296 (2008)CrossRefADSMathSciNetGoogle Scholar
  22. Zhang, X., Xu, H.: Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis. J. Opt. Soc. Am. A 25(2), 371–378 (2008). doi: 10.1364/JOSAA.25.000371 CrossRefADSGoogle Scholar
  23. Zhao, Y., Berns, R.S.: Image-based spectral reflectance reconstruction using the matrix R method. Color Res. Appl. 32(5), 343–351 (2007). doi: 10.1002/col.20341 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guangyuan Wu
    • 1
  • Xiaoying Shen
    • 2
  • Zhen Liu
    • 3
  • Shengwei Yang
    • 4
  • Ming Zhu
    • 5
  1. 1.School of Optical-Electrical and Computer EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Navy Marine Environment OfficeBeijingChina
  3. 3.College of Communication and Art DesignUniversity of Shanghai for Science and TechnologyShanghaiChina
  4. 4.Department of Printing and Packaging EngineeringShanghai Publishing and Printing CollegeShanghaiChina
  5. 5.Department of Materials and Chemical EngineeringHenan Institute of EngineeringZhengzhouChina

Personalised recommendations