Mollow spectrum influenced by collisional fluctuations described by a stochastic model of collisions

  • Khoa Doan Quoc
  • Van Cao Long
  • Lanh Chu Van
  • Hoa Nguyen Van
  • Hieu Nguyen Ngoc


In this paper, we consider the influence of collisional fluctuations on optical phenomena. The fluctuations are taken into account by a simple shift of the constant detuning, involved in a set of optical Bloch equations by collision frequency noise in which this noise is modelled by a two-step random telegraph signal. Following that, the stochastic Bloch equations can be solved analytically in an exact way. As an example, we consider in detail the Mollow spectrum of resonance fluorescence for the case of an arbitrary detuning of the laser frequency, where velocity of the emitters simply has a deterministic value or is distributed with the Maxwell–Boltzmann density in which volume of the buffer gas is arbitrary.


Resonance fluorescence Mollow spectrum Stochastic processes Collisional fluctuations 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2014.13.


  1. Bayrakçeken, F.: Highly sensitive detection of optical discrete absorption and resonance fluorescence of fused silica in the far ultraviolet. Spectrochim. Acta A 60, 923–925 (2004)CrossRefADSGoogle Scholar
  2. Cao Long, V.: Stimulated Raman scattering of pre-Gaussian light. Z. Phys. B 65, 535–538 (1987)CrossRefGoogle Scholar
  3. Cao Long, V., Doan Quoc, K.: An exact soluble equation for the steady state probability distribution in a nonlinear system: application to the noise reduction in Raman Ring Laser. Opt. Quantum Electron. 43, 137–145 (2012)CrossRefGoogle Scholar
  4. Cao Long, V.: stochastic models of isolated collisions: applications to optical phenomena. In: Paper Presented in LAMP Conference, 89, 02 Trieste, Italy (1989)Google Scholar
  5. Cao Long, V., Wódkiewicz, K.: Multiphoton ionization in the presence of pre-Gaussian light. J. Phys. B 19, 1925–1933 (1986)CrossRefADSGoogle Scholar
  6. Carlsten, J.L., Szöke, A., Raymer, M.G.: Collisional redistribution and saturation of near-resonance scattered light. Phys. Rev. A 15, 1029–1045 (1977)CrossRefADSGoogle Scholar
  7. Doan Quoc, K., Bui Dinh, T., Cao Long, V., Leoński, W.: A stochastic model of the influence of buffer gas collisions on Mollow spectra. Eur. Phys. J. Spec. Top. 222, 2241–2245 (2013)CrossRefGoogle Scholar
  8. Eberly, J.H., Wódkiewicz, K.: The time-dependent physical spectrum of light. J. Opt. Soc. Am. 67, 1252–1261 (1977)CrossRefADSGoogle Scholar
  9. Eberly, J.H., Wódkiewicz, K., Shore, B.W.: Noise in strong laser–atom interactions: phase telegraph noise. Phys. Rev. A 30, 2381–2389 (1984)CrossRefADSGoogle Scholar
  10. Gerber, S., Rotter, D., Slodička, L., Eschner, J., Carmichael, H.J., Blatt, R.: Intensity-field correlation of single-atom resonance fluorescence. Phys. Rev. Lett. 102, 183601–183604 (2009)CrossRefADSGoogle Scholar
  11. Heitler, W.: The Quantum Theory of Radiation. Oxford University Press, London (1954)MATHGoogle Scholar
  12. Leonov, A.G., Panteleev, A.A., Starostin, A.N., Chekhov, D.I.: Resonance fluorescence spectrum of a dense three-level medium (sodium vapor) in an intense laser field. Pis’ma Zh. Eksp. Teor. Fiz. 58, 959–963 (1993)Google Scholar
  13. Liu, R.H., Tan, W.H.: Resonance fluorescence spectrum by two-level system without the rotating wave approximation. Chin. Phys. Lett. 16, 23–25 (1999)CrossRefADSGoogle Scholar
  14. Loudon, R.: The Quantum Theory of Light. Clarendon Press, Oxford (1983)Google Scholar
  15. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, New York (1995)CrossRefGoogle Scholar
  16. Mollow, B.R.: Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969)CrossRefADSGoogle Scholar
  17. Mollow, B.R.: Elastic and inelastic collisional and radiative damping effects on saturated line shapes in the limit of well-separated spectral lines. Phys. Rev. A 15, 1023–1028 (1977)CrossRefADSGoogle Scholar
  18. Nakayama, K., Yoshikawa, Y., Matsumoto, H., Torii, Y., Kuga, T.: Precise intensity correlation measurement for atomic resonance fluorescence from optical molasses. Opt. Express 18, 6604–6612 (2010)CrossRefADSGoogle Scholar
  19. Schuda, F., Stroud Jr, C.R., Hercher, M.: Observation of the resonant Stark effect at optical frequencies. J. Phys. B 7, L198–L202 (1974)CrossRefADSGoogle Scholar
  20. Vamivakas, A.N., Zhao, Y., Lu, C.-Y., Atatüre, M.: Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198–202 (2009)CrossRefGoogle Scholar
  21. Wódkiewicz, K.: Stochastic incoherences of optical Bloch equations. Phys. Rev. A 19, 1686–1696 (1979)CrossRefADSMathSciNetGoogle Scholar
  22. Wódkiewicz, K.: Noise in strong laser-atom interaction. In: Proceedings of the 6th International School of Coherent Optics, Ustroń 19–26 Sept (1985)Google Scholar
  23. Wódkiewicz, K., Shore, B.W., Eberly, J.H.: Pre-Gaussian noise in strong laser–atom interactions. J. Opt. Soc. Am. B 1, 398–405 (1984a)CrossRefADSGoogle Scholar
  24. Wódkiewicz, K., Shore, B.W., Eberly, J.H.: Noise in strong laser–atom interactions: frequency fluctuations and nonexponential correlations. Phys. Rev. A 30, 2390–2398 (1984b)CrossRefADSGoogle Scholar
  25. Zhang, X.H., Hu, X.M.: Sideband entanglement in collective resonance fluorescence. Chin. Phys. B 20, 114205–114206 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Khoa Doan Quoc
    • 1
    • 2
  • Van Cao Long
    • 3
    • 4
  • Lanh Chu Van
    • 5
  • Hoa Nguyen Van
    • 6
  • Hieu Nguyen Ngoc
    • 1
  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Quang Tri Teacher Training CollegeDong HaVietnam
  3. 3.Quantum Optics and Engineering Division, Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland
  4. 4.Faculty of PhysicsWarsaw UniversityWarsawPoland
  5. 5.Vinh UniversityVinhVietnam
  6. 6.Hong Duc UniversityThanh HoaVietnam

Personalised recommendations