Optical and Quantum Electronics

, Volume 47, Issue 12, pp 3747–3757 | Cite as

Dispersion, decaying length and localization of transverse magnetic surface modes in one dimensional plasma photonic crystals



The dispersion behavior, localization and total energy flow of transverse magnetic surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystals truncated with varying cap layer is analyzed by transfer matrix method. It is observed that properties of surface modes highly depend upon parallel wave vector, thickness of cap layer and plasma frequency. By altering thickness of cap layer from lower to higher values, all of the surface modes shift towards lower band edge, and vice versa. Also, it is found that localization of transverse magnetic surface modes are controlled by plasma frequency, parallel wave vector and thickness of cap layer.


Surface modes Plasma photonic crystals Cap layer Localization 



The authors are grateful to Dr. R.D.S. Yadava and Dr. A. K. Singh for their continuous encouragement and supports in many ways.


  1. Averkov, Y.O., Beletskii, N.N., Tarapov, S.I., Kharchenko, A.A., Yakovenko, V.M.: Surface electromagnetic states at an interface between a photonic crystal and a plasma-like medium in an external constant magnetic field. Telecomm. Radio. Eng. 73, 43–59 (2014)CrossRefGoogle Scholar
  2. Bin, G.: Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one dimension absorptive plasma photonic crystal. Phys. Plasmas 16, 043508 (2009)CrossRefADSGoogle Scholar
  3. Fan, W., Dong, L.: Tunable one–dimensional plasma photonic crystal in dielectric barrier discharge. Phys. Plasmas. Phys. Plasmas. 17, 073506 (2010)CrossRefADSGoogle Scholar
  4. Gaspar-Armenta, J.A., Villa, F., Lopez-Rıos, T.: Surface waves in finite one-dimensional photonic crystals: mode coupling. Opt. Commun. 216, 379–384 (2003)CrossRefADSGoogle Scholar
  5. Gaspar-Armenta, J.A., Villa, F.: Photonic surface-wave excitation: photonic crystal-metal interface. J. Opt. Soc. Am. B 20, 2349–2354 (2003)CrossRefADSGoogle Scholar
  6. Hojo, H., Mase, A.: Dispersion relation of electromagnetic waves in one-dimensional plasma photonic. J. Plasma Fusion Res. 80, 89–90 (2004)CrossRefADSGoogle Scholar
  7. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)Google Scholar
  8. Kaliteevski, M., Iorsh, I., Brand, S., Abram, R.A., Chamberlain, J.M., Kavokin, A.V., Shelykh, I.A.: Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 76, 165415 (2007)CrossRefADSGoogle Scholar
  9. Kramper, P., Agio, M., Soukoulis, C.M., Birner, A., Müller, F., Wehrspohn, R.B., Gösele, U., Sandoghdar, V.: Highly directional emission from photonic crystal waveguides of subwavelength width. Phys. Rev. Lett. 92, 113903 (2004)CrossRefADSGoogle Scholar
  10. Liu, X.X., Tsai, C.F., Chern, R.L., Tsai, D.P.: Dispersion mechanism of surface magnetoplasmons in periodic layered structures. Appl. Opt. 48, 3102–3107 (2009)CrossRefADSGoogle Scholar
  11. Martorell, J., Sprung, D.W.L., Morozov, G.L.: Surface TE waves on 1D photonic crystals. J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006)CrossRefADSGoogle Scholar
  12. Meade, R.D., Brommer, K.D., Rappe, A.M., Joannopoulos, J.D.: Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B 44, 10961–10964 (1991)CrossRefADSGoogle Scholar
  13. Moreno, E., Martin, L., Gacia-Vial, F.J.: Enhanced transmission and beaming of light via photonic crystal surface modes. Phys. Rev. B 69, 121402 (2004)CrossRefADSGoogle Scholar
  14. Pang, X.N., Dong, J.W., Wang, H.Z.: Photonic localization of interface modes at the boundary between metal and Fibonacci quasi-periodic structure. J. Opt. Am. B 27, 2009–2013 (2010)CrossRefADSGoogle Scholar
  15. Ramos-Mendieta, F., Halevi, P.: Electromagnetic surface modes of a dielectric superlattice: the supercell method. J. Opt. Soc. Am. B14, 370–381 (1997)CrossRefADSGoogle Scholar
  16. Renger, J., Quidant, R., Novotny, L.: Enhanced nonlinear response from metal surfaces. Opt. Express 19, 1777–1785 (2011)CrossRefADSGoogle Scholar
  17. Sakai, O., Sakaguchi, T., Tachibana, K.: Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two dimensional array of columnar microplasmas. Appl. Phys. Lett. 87, 241505 (2007)CrossRefADSGoogle Scholar
  18. Shinn, M., Robertson, W.M.: Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sens. Actuators B105, 360–364 (2005)CrossRefGoogle Scholar
  19. Vetrov, S.Y., Shabanov, A.V.: Surface electromagnetic waves at the interface of an isotropic medium and a superlattice. Sov. Phys. JETP. 74, 719–722 (1992)Google Scholar
  20. Wang, T.B., Yin, C.P., Liang, W.Y., Dong, J.W., Wang, H.Z.: Electromagnetic surface modes in one-dimensional photonic crystals with dispersive metamaterials. J. Opt. Soc. Am. B26, 1635–1640 (2009)CrossRefADSGoogle Scholar
  21. Yeh, P., Yariv, A., Cho, A.Y.: Optical surface waves in periodic layered media. Appl. Phys. Lett. 32, 104–105 (1978)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations