Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 10, pp 3301–3312 | Cite as

Optical properties of left-handed metamaterial involving coated nano-spheres

  • H. Sadeghi
  • A. Zolanvar
  • A. Ranjgar
Article
  • 161 Downloads

Abstract

We present theoretical results of a left-handed metamaterial engineered by a combination of coated and solid nano-spheres. The structure is a binary composite of CdSTiO 2 core–shell and Au solid nano-spheres which simultaneously dispersed in the air matrix. The effective medium parameters derived by extended Maxwell-Garnett (EMG) effective medium theory. It is shown the possibility of fine-tuning the metamaterial in order to observe left-handed behavior. The results are supplemented with transmittance curves, calculated by layer-multiple-scattering (LMS) method. The predictions of the EMG theory are in good agreement with those of LMS method; thus the (CdSTiO 2)/Au nano-composite is an appropriate choice as a three-dimensional left-handed metamaterial.

Keywords

Metamaterial Left-handed Negative refraction index Extended Maxwell-Garnett theory 

References

  1. Ashour, A.: Physical properties of spray pyrolysed CdS thin films. Turk. J. Phys. 27, 551–558 (2003)Google Scholar
  2. Aspnes, D.E.: Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50, 704–709 (1982)CrossRefADSGoogle Scholar
  3. Bohren, C.: Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci. 43, 468–475 (1986)CrossRefADSGoogle Scholar
  4. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York (1983)Google Scholar
  5. Bruggeman, D.A.: Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935)CrossRefGoogle Scholar
  6. Doyle, W.T.: Optical properties of a suspension of metal spheres. Phys. Rev. B 39, 9852–9858 (1989)CrossRefADSGoogle Scholar
  7. Foteinopoulou, S.: Photonic crystals as metamaterials. Phys. B 407, 4056–4061 (2012)CrossRefADSGoogle Scholar
  8. Granqvist, C.G., Hunderi, O.: Optical properties of Af–SiO2 cermet films: a comparison of effective medium theories. Phys. Rev. B 18, 2897–2906 (1978)CrossRefADSGoogle Scholar
  9. Huang, K.C., Povinelli, M.L., Joannopoulos, J.D.: Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett. 85, 543–545 (2004)CrossRefADSGoogle Scholar
  10. Ibach, H., Luth, H.: Solid-State Physics. Springer, Berlin (2003)CrossRefGoogle Scholar
  11. Lorenz, L.: Ueber die Refractionsconstante. Ann. Phys. 11, 70–103 (1880)CrossRefGoogle Scholar
  12. Luo, R.: Effective medium theories for the optical properties of three-component composite materials. Appl. Opt. 36, 8153–8158 (1997)CrossRefADSGoogle Scholar
  13. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. Ser. A 203, 385–420 (1904)CrossRefADSGoogle Scholar
  14. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefADSGoogle Scholar
  15. Ruppin, R.: Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182, 273–279 (2000)CrossRefADSGoogle Scholar
  16. Sadeghi, H., Zolanvar, A., Ranjgar, A., Norouzi, R.: Terahertz response of ZnS/Ge and ZnO/Ge nanostructured composites. Plasmonics 9, 327–333 (2014a)CrossRefGoogle Scholar
  17. Sadeghi, H., Zolanvar, A., Ranjgar, A., Norouzi, R.: Effective permittivity and refractive index of TiO2/Ge and SiO2/Ge nanostructures at high frequencies. J. Electron. Mater. 43(11), 4294–4300 (2014b)CrossRefADSGoogle Scholar
  18. Shalaev, V.M.: Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films. Springer, Berlin (2000)Google Scholar
  19. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefADSGoogle Scholar
  20. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2005)CrossRefADSGoogle Scholar
  21. Stefanou, N., Yannopapas, V., Modinos, A.: MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals. Comput. Phys. Commun. 132, 189–196 (2000)MATHCrossRefADSGoogle Scholar
  22. The code EFFE2P can be downloaded from http://www.wave-scattering.com/effe2p.f
  23. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10(4), 509–514 (1968)CrossRefADSGoogle Scholar
  24. Yannopapas, V., Moroz, A.: Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J. Phys. Condens. Matter 17, 3717–3734 (2005)CrossRefADSGoogle Scholar
  25. Zolanvar, A., Sadeghi, H., Ranjgar, A.: Effective dielectric properties of Au–ZnS and Au–ZnO plasmonics nanocomposites in the terahertz regime. Chin. Phys. Lett. 31(10), 106201 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations