Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 10, pp 3273–3287 | Cite as

Analysis of the effects of temperature and the electric field on quantum cascade laser characteristics

  • Sumit Saha
  • Jitendra Kumar
Article

Abstract

The effects of temperature and the electric field on the characteristics of a quantum cascade laser (QCL) have been investigated theoretically. A complete three level rate equation model considering all the scattering events has been proposed. The analytical expression for the threshold current density has been derived and the effects of temperature and the electric field are examined. The rate equation model is further used to analyze the population and photon number dynamics present within the cavity of a QCL and the effects of temperature and the electric field on the laser dynamics are investigated numerically.

Keywords

Quantum cascade lasers (QCLs) Rate equations Electric field Temperature Turn-on delay time Rise time Backscattering Anticrossing Oscillator strength 

Notes

Acknowledgments

Financial support from UGC–SAP, India under the DRS Programme is gratefully acknowledged.

References

  1. Chen, G., Bethea, C.G., Martini, R., Grant, P.D., Dudek, R., Liu, H.C.: High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination. Appl. Phys. Lett. 95, 101104-1–101104-3 (2009)ADSGoogle Scholar
  2. Chen, G., Martini, R., Park, S.W., Bethea, C.G., Chen, I.C.A., Grant, P.D., Dudek, R., Liu, H.C.: Optically induced fast wavelength modulation in a quantum cascade laser. Appl. Phys. Lett. 97, 011102-1–011102-3 (2010)ADSGoogle Scholar
  3. Donovan, K., Harrison, P., Kinsler, P., Kelsall, R.W.: Maximizing the population inversion by optimizing the depopulation rate in far-infrared quantum cascade lasers. Superlattices Microstruct. 25, 373–376 (1999)CrossRefADSGoogle Scholar
  4. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553–556 (1994)CrossRefADSGoogle Scholar
  5. Hamadou, A., Lamari, S., Thobel, J.L.: Dynamic modelling of a midinfrared quantum cascade laser. J. Appl. Phys. 105, 093116-1–093116-6 (2009)CrossRefADSGoogle Scholar
  6. Haldar, M.K.: A simplified analysis of direct intensity modulation of quantum cascade lasers. IEEE J. Quantum Electron. 41, 1349–1355 (2005)CrossRefADSGoogle Scholar
  7. Harrison, P.: Quantum Wells, Wires and Dots, Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd edn. Wiley, Hoboken (2005)Google Scholar
  8. Hamadou, A., Thobel, J.L., Lamari, S.: Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers. Opt. Commun. 281, 5385–5388 (2008)CrossRefADSGoogle Scholar
  9. Jirauschek, C., Kubis, T.: Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 011307-1–011307-51 (2014)CrossRefADSGoogle Scholar
  10. Lindskog, M., Wolf, J.M., Trinite, V., Liverini, V., Faist, J., Maisons, G., Carras, M., Aidam, R., Ostendorf, R., Wacker, A.: Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions. Appl. Phys. Lett. 105, 103106-1–103106-4 (2014)CrossRefADSGoogle Scholar
  11. Liu, C., Roy, R., Abarbanel, H.D.I., Gills, Z., Nunes, K.: Influence of noise on chaotic laser dynamics. Phys. Rev. E 55, 6483–6500 (1997)CrossRefADSGoogle Scholar
  12. Mustafa, N., Pesquera, L., Cheung, C.Y.L., Shore, K.A.: Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers. IEEE Photonics Technol. Lett. 11, 527–529 (1999)CrossRefADSGoogle Scholar
  13. Martini, R., Gmachl, C., Falciglia, J., Curti, F.G., Bethea, C.G., Capasso, F., Whittaker, E.A., Paiella, R., Tredicucci, A., Hutchinson, A.L., Sivco, D.L., Cho, A.Y.: High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers. Electron. Lett. 37, 191–193 (2001)CrossRefGoogle Scholar
  14. Pereira Jr, M.F.: Microscopic approach for intersubband-based thermophotovoltaic structures in the terahertz and mid-infrared. J. Opt. Soc. Am. B 28, 2014–2017 (2011)CrossRefADSGoogle Scholar
  15. Schmielau, T., Pereira, M.F.: Momentum dependent scattering matrix elements in quantum cascade laser transport. Microelectron. J. 40, 869–871 (2008)CrossRefGoogle Scholar
  16. Schmielau, T., Pereira Jr, M.F.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 95, 231111-1–231111-3 (2009)CrossRefADSGoogle Scholar
  17. Tan, S., Zhang, J.C., Zhuo, N., Wang, L.J., Liu, F.Q., Yao, D.Y., Liu, J.Q., Wang, Z.G.: Low-threshold, high SMSR tunable external cavity quantum cascade laser around 4.7 μm. Opt. Quantum Electron. 45, 1147–1155 (2013)CrossRefGoogle Scholar
  18. Tan, S., Zhang, J., Wang, L., Liu, F., Zhuo, N., Yan, F., Liu, J., Wang, Z.: Index-coupled multi-wavelength distributed feedback quantum cascade lasers based on sampled gratings. Opt. Quantum Electron. (2014). doi: 10.1007/s11082-013-9868-9 Google Scholar
  19. Winge, D.O., Wacker, A.: Temperature dependent nonlinear response of quantum cascade structures. Opt. Quantum Electron. 46, 533–539 (2014)CrossRefGoogle Scholar
  20. Webb, J.F., Halder, M.K.: Improved two level model of mid-infrared quantum cascade lasers for analysis of direct intensity modulation response. J. Appl. Phys. 111, 043110-1–043110-5 (2012)CrossRefADSGoogle Scholar
  21. Yamanishi, M., Edamura, T., Fujita, K., Akikusa, N., Kan, H.: Theory of the intrinsic linewidth of quantumcascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons. IEEE. J. Quantum Electron. 44, 12–29 (2008)CrossRefADSGoogle Scholar
  22. Yao, D.Y., Zhang, J.C., Liu, F.Q., Jia, Z.W., Yan, F.L., Wang, L.J., Liu, J.Q., Wang, Z.G.: 1.8-W room temperature pulsed operation of substrate-emitting quantum cascade lasers. IEEE Photonics Technol. Lett. 26, 323–325 (2014)CrossRefADSGoogle Scholar
  23. Yong, K.S.C., Haldar, M.K., Webb, J. F.: Turn-on analysis of quantum cascade lasers. In: IEEE Asia-Pacific Microwave Conference Proceedings. pp. 1012–1014 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian School of MinesDhanbadIndia

Personalised recommendations