Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 10, pp 3253–3271 | Cite as

Coaxial-geometry tunable dual-wavelength flashlamp-pumped Nd:Yag laser

  • Margarita Deneva
  • Marin Nenchev
  • Ernst Wintner
  • Suat Topcu
Article
  • 102 Downloads

Abstract

We propose to take advantage of the focalization effect of the pump light by the cylindrical laser rod in a side-pumped Nd:YAG laser (flashlamp or diode pumping) to obtain efficient two-wavelength operation. Under conveniently chosen conditions the focusing by the rod increases the pump power density in the near axial rod part about 2½ times, as we show, in comparison with the peripheral rod part. The focalization can strongly facilitate and to increase energetically the generation of weaker lasing lines in the axial part. This advantage is utilized by employing coaxial two-channel laser architecture, where the optically separated axial and peripheral parts of the rod generate each in its own spectral selective resonator. Beside the competition-less generation at two wavelengths (lines), other specific and essential advantages of the proposed laser solution are: (1) to produce emissions at a weaker line (generated in the axial part) and at a stronger line (in peripheral part), simultaneously and with equalized energy without loss of pump energy for the equalization; (2) the two emissions are produced and emitted naturally in coaxial beams using the full rod volume. We have realized such a laser with flash-lamp pumping (output to ~0.45 J; tunable pair of lines from 1.06, 1.32, 1.34, 1.36 and 1.44 μm) and carried out an experimental and theoretical study of its operation, including passive Q-switching.

Keywords

Two-wavelength Nd:YAG laser Coaxial geometry Laser rod focalization effect Competition-less generation Flashlamp pumping Independent control 

Notes

Acknowledgments

This work was supported partially by the contracts DNTS/Austria 01/3 (Project No. BG 07/2013) and DRILA 01/7-19 (TR PHC RILA 2011 Projet No. 25197 VB France) and the Technical University of Sofia, R&D Department and Branch Plovdiv. M.D. and M.N. thank to Photonics Institute, Vienna University of Technology and LISV, Universite de Versailles Saint-Quentin, France for the possibility to carry out joint work in their laboratories.

References

  1. Aldag, H.R., Titterton, D.H.: From flashlamp-pumped liquid dye lasers to diode-pumped solid-state dye lasers. In: SPIE Photonics West, San Jose, CA (2005). http://www.dmlittle.eclipse.co.uk/lasers/documentation/FromFlashlamp-PumpedLiquidDyeLasers.pdf. Accessed 10 Oct 2014
  2. Batishche, S.A., Kuz’muk, A.A., Malevich, N.A., Tatur, G.A.: A powerful, repetitively pulsed 1444-nm Nd:YAG laser. Quant. Electron. 30(8), 673–674 (2000)Google Scholar
  3. Chen, L., Wang, Z., Liu, H., Zhuang, S., Guo, L., Lan, R., Wang, J., Xu, X.: Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser. Opt. Express. 18(21), 22167–22173 (2010); and the literature cited there inGoogle Scholar
  4. Dandliker, R., Thalmann, R., Prongue, D.: Two-wavelength laser interferometry using superheterodine detection. Opt. Lett. 13(5), 339–341 (1988)CrossRefADSGoogle Scholar
  5. Deneva, M., Uzunova, P., Nenchev, M.: Tunable subnanosecond laser pulse generation using an active mirror concept. Opt. Quant. Electron. 39, 193–212 (2007)CrossRefGoogle Scholar
  6. Devaux, B.C., Roux, F.X.: Experimental and clinical standards and evolution of lasers in neurosurgery. Acta Neurochir. Eur. J. Neurosurg. 138, 1135–1147 (1996); and the literature cited there inGoogle Scholar
  7. Farley, R.W., Dao, P.D.: Development of an intracavity summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system. Appl. Opt. 34, 4269–4273 (1995)CrossRefADSGoogle Scholar
  8. Grossard, L., Desfarges-Berthelemo,t A., Colombeau, B., Couderc, Y., Froehly, C.: Dual frequency tunable cw Nd:YAG laser. Opt. Commun. 188, 353–357 (2001)Google Scholar
  9. Ifflander, R.: Solid-State Lasers for Materials Processing, Series in Optical Sciences. Springer, Berlin (2001). ISSN0342-4111, ISBN 3-540-66980-9Google Scholar
  10. Inoue, Y., Kono, S., Kojima, T., Fujicawa, S.: High power red beam generation by frequency-doubling of a Nd:YAG laser. IEEE J. Quant. Electron. 35(11), 1737–1740 (1999)CrossRefADSGoogle Scholar
  11. Kaminskii, A.A.: Laser with combined active medium. Sov. Phys. Dokl. 13, 413–416 (1968)ADSGoogle Scholar
  12. Kisov, H., Deneva, M., Nenchev, M.: Development of a tunable, competition less flash-lamp pumped Nd:YAG leser generated of a chosen pair of two lines. Proc SPIE. 8770, 87701Q-1–87701Q-9 (2013)Google Scholar
  13. Koechner, W.: Solid-State Laser Engineering, 6 revised and updated edition, Springer, Berlin (2005)Google Scholar
  14. Krennrich, D., Hnappe, R., Henrich, B., Wallenstein, R., l’Huillier, J.A.: A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3 μm. Part 2: passively mode locked-operation. Appl. Phys. B 92, 175–183 (2008)Google Scholar
  15. Kretschmann, H.M., Heine, F., Ostroumov, V.G., Huber, G.: High-power diode-pumped continuous-wave Nd3+ lasers at wavelengths near 1.44 μm. Opt. Lett. 22(7), 466–468 (1997)CrossRefADSGoogle Scholar
  16. Lampis, G., Sacchi, C.A., Svelto, O.: Pump energy absorption in a ruby rod. Appl. Opt. 3(12), 1467–1470 (1964)CrossRefADSGoogle Scholar
  17. Levin, I.B., Chercassov, A.S.: Combined dye solution-Nd:YAG laser. Sov. J. Appl. Spectrosc. 45(5), 846–850 (1987)Google Scholar
  18. Lidar for monitoring atmospheric processes and properties, Prospectus Kipp & Zonen, The Netherlands. http://www.campbellsci.com.br/sistemas/. Accessed 10 Oct 2014
  19. Lee, H., Kim, Y.: Simultaneous dual-wavelength oscillation at 1357 and 1444 nm in Kr-flashlamp pumped Nd:YAG laser. Opt. Commun. 281(17), 4455–4458 (2008)CrossRefADSGoogle Scholar
  20. Lin, P.P., Andriasyan, M.A., Swartz, B.A., Witherspoon, N., Holloway Jr, J.H.: Multiwavelength output from a Nd:YAG-Cr:LiSAF hybrid laser. Appl. Opt. 38(9), 1767–1771 (1999)CrossRefADSGoogle Scholar
  21. Louyer, Y., Wallerand, J.-P., Himbert, M., Deneva, M., Nenchev, M.: Two-wavelength passive self injection controlled operation of a diode pumped cw Yb:doped crystal lasers. Appl. Opt. 42(27), 5463–5476 (2003)CrossRefADSGoogle Scholar
  22. Lu, B., Chen, H., Guo, J., Jiang, M., Zhang, R., Bai, J., Ren, Z.: Multi-wavelength operation of LD side-pumped Nd:YAG laser. Opt. Commun. 284(7), 1941–1944 (2011)CrossRefADSGoogle Scholar
  23. Massachusetts Institute of Technology, “LASERS”, US Patent Conv. Appl. No 654 100, filled 2 Feb.1976 in US, Complete Spcif. Publ. 17 Sep. 1980, Patent Specification. 1 575 033 The Patent Office—London, Application No. 2980/77, Filed 25 Jan. 1977Google Scholar
  24. Nenchev, M.N.: Multicolor Laser. Bulgarian patent IIR No25954/reg.38529 (1978)Google Scholar
  25. Rico, M.L., Valdes, J.L., Martinez-pastor, J., Capmany, J.: Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(PO3)4 and observation of yellow laser light generation at 592 nm their self-sum-frequency-mixing. Opt. Commun. 282(8), 1619–1621 (2009)CrossRefADSGoogle Scholar
  26. Saha, A., Ray, A., Mukhopadhyay, S., Sinha, N., Datta, P.K., Dutta, P.K.: Simultaneous multi-wavelength oscillation of Nd laser around 1.3 μm: A potential source for coherent terahertz generation. Opt. Express 14, 4721–4726 (2006)CrossRefADSGoogle Scholar
  27. Saha, A., Ray, A., Mukhopandhay, S., Datta, P.K., Saltiel, S.M.: Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3 μm. Appl. Phys. B 87, 431–436 (2007)CrossRefADSGoogle Scholar
  28. Salamu, G., Osiac, E., Dascalu, C., Pavel, N., Dascalu, T.: Simultaneous dual-wavelength operation at 1.06 and 1.34 μm in Nd-vanadate laser crystals. Laser Phys. 22(5), 866–871 (2012)CrossRefADSGoogle Scholar
  29. Shi, W.Q., Kurtz, R., Machan, J., Bass, M., Birnbaum, M., Kotka, M.: Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12. Appl. Phys. Lett. 51(16), 1218–1220 (1987)CrossRefADSGoogle Scholar
  30. Song, J., Shen, D., Liu, A., Li, C., Kim, N.S., Ueda, K.-I.: Simultaneous multiple-wavelength cw lasing in laser-diode-pumped composite rods of Nd:YAG and Nd:YLF. Appl. Opt. 38(24), 5158–5161 (1999)CrossRefADSGoogle Scholar
  31. Sparosu, K., Chen, W., Stultz, R., Birnbaum, M., Shestakov, A.V.: Dual Q-switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K. Opt. Lett. 18(10), 814–816 (1993)CrossRefADSGoogle Scholar
  32. Spinhirne, J.D., Chudamani, S., Cavanaugh, J.F., Buffon, J.L.: Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar. Appl. Opt. 36(15), 3475–3490 (1997)CrossRefADSGoogle Scholar
  33. Svelto, O.: Principles of Lasers, 5 ed. Springer, Berlin (2010). ISBN 978-1-4419-1301-2 (e-ISBN 978-1-4419-1302-9)Google Scholar
  34. Tankovich, N., Lukashev, A.: United States Patent, Patent No. US 6,613,042 B1 (2003)Google Scholar
  35. Vaicikauskasa, V., Kuprionisb, Z., Kaucikasa, M., Svedasa, V., Kabelkaa, V.: Mid-infrared all solid state DIAL for remote sensing of hazardous chemical agents. In: Proceedings of SPIE 6214, Laser Radar Technology and Applications XI, 62140E, 19 May 2006. doi: 10.1117/12.665638
  36. Wang, Z., Yang, F., Xie, S., Xu, Y., Xu, J., Bo, Y., Peng, Q., Zhang, J., Cui, D., Xu, Z.: Multiwavelength green-yellow laser based on a Nd:YAG laser with nonlinear frequency conversion in a LBO crystal. Appl. Opt. 51(18), 4196–4200 (2012); and the literature cited thereinGoogle Scholar
  37. Xu, J.L., Huang, H.T., He, J.L., Yang, J.F., Zhang, B.T., Yang, X.Q., Liu, F.Q.: Dual-wavelength oscillation at 1064 and 1342 nm in a passively Q-switched Nd:YVO4 laser with V3+: YAG as saturable absorber. Appl. Phys. B 103, 75–82 (2011)CrossRefADSGoogle Scholar
  38. Zanzottera, E.: Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere. Crit. Rev. Anal. Chem. 21, 279–319 (1990)CrossRefGoogle Scholar
  39. Zhang, X.X., Bass, M., Chai, B.H.T., Johnson, P.J., Oles, J.C.: Lamp-pumped laser performance of Nd3+:Sr5(PO4)3F operating both separately and simultaneously at 1.059 and 1.328 μm. J. Appl. Phys. 80, 1280–1286 (1996)CrossRefADSGoogle Scholar
  40. Zhao, L.N., Su, J., Hu, X.P., Lv, X.J., Xie, Z.D., Zhao, G., Xu, P., Zhu, S.N.: Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal. Opt. Express 18(13), 13331–13336 (2010)CrossRefADSGoogle Scholar
  41. Zhu, H.Y., Zhang, G., Huang, C.H., Wei, Y., Huang, L.X., Li, A.H., Chen, Z.Q.: 1318.8 nm/1338.2 nm simultaneous, dual-wavelength Q-switched Nd:YAG laser. Appl. Phys. B 90, 451–454 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Margarita Deneva
    • 1
  • Marin Nenchev
    • 1
  • Ernst Wintner
    • 2
  • Suat Topcu
    • 3
  1. 1.Dept. OELE and R&D Lab. QOELTechnical University of SofiaPlovdivBulgaria
  2. 2.Photonics InstituteVienna University of TechnologyViennaAustria
  3. 3.Laboratoire d’Ingénierie des Systèmes de Versailles (LISV)Université de Versailles Saint-QuentinVersaillesFrance

Personalised recommendations