Skip to main content
Log in

Coaxial-geometry tunable dual-wavelength flashlamp-pumped Nd:Yag laser

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose to take advantage of the focalization effect of the pump light by the cylindrical laser rod in a side-pumped Nd:YAG laser (flashlamp or diode pumping) to obtain efficient two-wavelength operation. Under conveniently chosen conditions the focusing by the rod increases the pump power density in the near axial rod part about 2½ times, as we show, in comparison with the peripheral rod part. The focalization can strongly facilitate and to increase energetically the generation of weaker lasing lines in the axial part. This advantage is utilized by employing coaxial two-channel laser architecture, where the optically separated axial and peripheral parts of the rod generate each in its own spectral selective resonator. Beside the competition-less generation at two wavelengths (lines), other specific and essential advantages of the proposed laser solution are: (1) to produce emissions at a weaker line (generated in the axial part) and at a stronger line (in peripheral part), simultaneously and with equalized energy without loss of pump energy for the equalization; (2) the two emissions are produced and emitted naturally in coaxial beams using the full rod volume. We have realized such a laser with flash-lamp pumping (output to ~0.45 J; tunable pair of lines from 1.06, 1.32, 1.34, 1.36 and 1.44 μm) and carried out an experimental and theoretical study of its operation, including passive Q-switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aldag, H.R., Titterton, D.H.: From flashlamp-pumped liquid dye lasers to diode-pumped solid-state dye lasers. In: SPIE Photonics West, San Jose, CA (2005). http://www.dmlittle.eclipse.co.uk/lasers/documentation/FromFlashlamp-PumpedLiquidDyeLasers.pdf. Accessed 10 Oct 2014

  • Batishche, S.A., Kuz’muk, A.A., Malevich, N.A., Tatur, G.A.: A powerful, repetitively pulsed 1444-nm Nd:YAG laser. Quant. Electron. 30(8), 673–674 (2000)

  • Chen, L., Wang, Z., Liu, H., Zhuang, S., Guo, L., Lan, R., Wang, J., Xu, X.: Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser. Opt. Express. 18(21), 22167–22173 (2010); and the literature cited there in

  • Dandliker, R., Thalmann, R., Prongue, D.: Two-wavelength laser interferometry using superheterodine detection. Opt. Lett. 13(5), 339–341 (1988)

    Article  ADS  Google Scholar 

  • Deneva, M., Uzunova, P., Nenchev, M.: Tunable subnanosecond laser pulse generation using an active mirror concept. Opt. Quant. Electron. 39, 193–212 (2007)

    Article  Google Scholar 

  • Devaux, B.C., Roux, F.X.: Experimental and clinical standards and evolution of lasers in neurosurgery. Acta Neurochir. Eur. J. Neurosurg. 138, 1135–1147 (1996); and the literature cited there in

  • Farley, R.W., Dao, P.D.: Development of an intracavity summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system. Appl. Opt. 34, 4269–4273 (1995)

    Article  ADS  Google Scholar 

  • Grossard, L., Desfarges-Berthelemo,t A., Colombeau, B., Couderc, Y., Froehly, C.: Dual frequency tunable cw Nd:YAG laser. Opt. Commun. 188, 353–357 (2001)

  • Ifflander, R.: Solid-State Lasers for Materials Processing, Series in Optical Sciences. Springer, Berlin (2001). ISSN0342-4111, ISBN 3-540-66980-9

  • Inoue, Y., Kono, S., Kojima, T., Fujicawa, S.: High power red beam generation by frequency-doubling of a Nd:YAG laser. IEEE J. Quant. Electron. 35(11), 1737–1740 (1999)

    Article  ADS  Google Scholar 

  • Kaminskii, A.A.: Laser with combined active medium. Sov. Phys. Dokl. 13, 413–416 (1968)

    ADS  Google Scholar 

  • Kisov, H., Deneva, M., Nenchev, M.: Development of a tunable, competition less flash-lamp pumped Nd:YAG leser generated of a chosen pair of two lines. Proc SPIE. 8770, 87701Q-1–87701Q-9 (2013)

  • Koechner, W.: Solid-State Laser Engineering, 6 revised and updated edition, Springer, Berlin (2005)

  • Krennrich, D., Hnappe, R., Henrich, B., Wallenstein, R., l’Huillier, J.A.: A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3 μm. Part 2: passively mode locked-operation. Appl. Phys. B 92, 175–183 (2008)

  • Kretschmann, H.M., Heine, F., Ostroumov, V.G., Huber, G.: High-power diode-pumped continuous-wave Nd3+ lasers at wavelengths near 1.44 μm. Opt. Lett. 22(7), 466–468 (1997)

    Article  ADS  Google Scholar 

  • Lampis, G., Sacchi, C.A., Svelto, O.: Pump energy absorption in a ruby rod. Appl. Opt. 3(12), 1467–1470 (1964)

    Article  ADS  Google Scholar 

  • Levin, I.B., Chercassov, A.S.: Combined dye solution-Nd:YAG laser. Sov. J. Appl. Spectrosc. 45(5), 846–850 (1987)

    Google Scholar 

  • Lidar for monitoring atmospheric processes and properties, Prospectus Kipp & Zonen, The Netherlands. http://www.campbellsci.com.br/sistemas/. Accessed 10 Oct 2014

  • Lee, H., Kim, Y.: Simultaneous dual-wavelength oscillation at 1357 and 1444 nm in Kr-flashlamp pumped Nd:YAG laser. Opt. Commun. 281(17), 4455–4458 (2008)

    Article  ADS  Google Scholar 

  • Lin, P.P., Andriasyan, M.A., Swartz, B.A., Witherspoon, N., Holloway Jr, J.H.: Multiwavelength output from a Nd:YAG-Cr:LiSAF hybrid laser. Appl. Opt. 38(9), 1767–1771 (1999)

    Article  ADS  Google Scholar 

  • Louyer, Y., Wallerand, J.-P., Himbert, M., Deneva, M., Nenchev, M.: Two-wavelength passive self injection controlled operation of a diode pumped cw Yb:doped crystal lasers. Appl. Opt. 42(27), 5463–5476 (2003)

    Article  ADS  Google Scholar 

  • Lu, B., Chen, H., Guo, J., Jiang, M., Zhang, R., Bai, J., Ren, Z.: Multi-wavelength operation of LD side-pumped Nd:YAG laser. Opt. Commun. 284(7), 1941–1944 (2011)

    Article  ADS  Google Scholar 

  • Massachusetts Institute of Technology, “LASERS”, US Patent Conv. Appl. No 654 100, filled 2 Feb.1976 in US, Complete Spcif. Publ. 17 Sep. 1980, Patent Specification. 1 575 033 The Patent Office—London, Application No. 2980/77, Filed 25 Jan. 1977

  • Nenchev, M.N.: Multicolor Laser. Bulgarian patent IIR No25954/reg.38529 (1978)

  • Rico, M.L., Valdes, J.L., Martinez-pastor, J., Capmany, J.: Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(PO3)4 and observation of yellow laser light generation at 592 nm their self-sum-frequency-mixing. Opt. Commun. 282(8), 1619–1621 (2009)

    Article  ADS  Google Scholar 

  • Saha, A., Ray, A., Mukhopadhyay, S., Sinha, N., Datta, P.K., Dutta, P.K.: Simultaneous multi-wavelength oscillation of Nd laser around 1.3 μm: A potential source for coherent terahertz generation. Opt. Express 14, 4721–4726 (2006)

    Article  ADS  Google Scholar 

  • Saha, A., Ray, A., Mukhopandhay, S., Datta, P.K., Saltiel, S.M.: Littrow-type discretely tunable, Q-switched Nd:YAG laser around 1.3 μm. Appl. Phys. B 87, 431–436 (2007)

    Article  ADS  Google Scholar 

  • Salamu, G., Osiac, E., Dascalu, C., Pavel, N., Dascalu, T.: Simultaneous dual-wavelength operation at 1.06 and 1.34 μm in Nd-vanadate laser crystals. Laser Phys. 22(5), 866–871 (2012)

    Article  ADS  Google Scholar 

  • Shi, W.Q., Kurtz, R., Machan, J., Bass, M., Birnbaum, M., Kotka, M.: Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12. Appl. Phys. Lett. 51(16), 1218–1220 (1987)

    Article  ADS  Google Scholar 

  • Song, J., Shen, D., Liu, A., Li, C., Kim, N.S., Ueda, K.-I.: Simultaneous multiple-wavelength cw lasing in laser-diode-pumped composite rods of Nd:YAG and Nd:YLF. Appl. Opt. 38(24), 5158–5161 (1999)

    Article  ADS  Google Scholar 

  • Sparosu, K., Chen, W., Stultz, R., Birnbaum, M., Shestakov, A.V.: Dual Q-switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K. Opt. Lett. 18(10), 814–816 (1993)

    Article  ADS  Google Scholar 

  • Spinhirne, J.D., Chudamani, S., Cavanaugh, J.F., Buffon, J.L.: Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar. Appl. Opt. 36(15), 3475–3490 (1997)

    Article  ADS  Google Scholar 

  • Svelto, O.: Principles of Lasers, 5 ed. Springer, Berlin (2010). ISBN 978-1-4419-1301-2 (e-ISBN 978-1-4419-1302-9)

  • Tankovich, N., Lukashev, A.: United States Patent, Patent No. US 6,613,042 B1 (2003)

  • Vaicikauskasa, V., Kuprionisb, Z., Kaucikasa, M., Svedasa, V., Kabelkaa, V.: Mid-infrared all solid state DIAL for remote sensing of hazardous chemical agents. In: Proceedings of SPIE 6214, Laser Radar Technology and Applications XI, 62140E, 19 May 2006. doi:10.1117/12.665638

  • Wang, Z., Yang, F., Xie, S., Xu, Y., Xu, J., Bo, Y., Peng, Q., Zhang, J., Cui, D., Xu, Z.: Multiwavelength green-yellow laser based on a Nd:YAG laser with nonlinear frequency conversion in a LBO crystal. Appl. Opt. 51(18), 4196–4200 (2012); and the literature cited therein

  • Xu, J.L., Huang, H.T., He, J.L., Yang, J.F., Zhang, B.T., Yang, X.Q., Liu, F.Q.: Dual-wavelength oscillation at 1064 and 1342 nm in a passively Q-switched Nd:YVO4 laser with V3+: YAG as saturable absorber. Appl. Phys. B 103, 75–82 (2011)

    Article  ADS  Google Scholar 

  • Zanzottera, E.: Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere. Crit. Rev. Anal. Chem. 21, 279–319 (1990)

    Article  Google Scholar 

  • Zhang, X.X., Bass, M., Chai, B.H.T., Johnson, P.J., Oles, J.C.: Lamp-pumped laser performance of Nd3+:Sr5(PO4)3F operating both separately and simultaneously at 1.059 and 1.328 μm. J. Appl. Phys. 80, 1280–1286 (1996)

    Article  ADS  Google Scholar 

  • Zhao, L.N., Su, J., Hu, X.P., Lv, X.J., Xie, Z.D., Zhao, G., Xu, P., Zhu, S.N.: Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal. Opt. Express 18(13), 13331–13336 (2010)

    Article  ADS  Google Scholar 

  • Zhu, H.Y., Zhang, G., Huang, C.H., Wei, Y., Huang, L.X., Li, A.H., Chen, Z.Q.: 1318.8 nm/1338.2 nm simultaneous, dual-wavelength Q-switched Nd:YAG laser. Appl. Phys. B 90, 451–454 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the contracts DNTS/Austria 01/3 (Project No. BG 07/2013) and DRILA 01/7-19 (TR PHC RILA 2011 Projet No. 25197 VB France) and the Technical University of Sofia, R&D Department and Branch Plovdiv. M.D. and M.N. thank to Photonics Institute, Vienna University of Technology and LISV, Universite de Versailles Saint-Quentin, France for the possibility to carry out joint work in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Deneva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deneva, M., Nenchev, M., Wintner, E. et al. Coaxial-geometry tunable dual-wavelength flashlamp-pumped Nd:Yag laser. Opt Quant Electron 47, 3253–3271 (2015). https://doi.org/10.1007/s11082-015-0205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0205-3

Keywords

Navigation