Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 9, pp 3201–3212 | Cite as

Nonlinear nanophotonic and nanoplasmonic directional couplers: comparison of modelling methods

  • Pavel Koška
  • Jiří Petráček
  • Pavel Kwiecien
  • Jaroslav Luksch
  • Ivan Richter
  • Jiří Čtyroký
Article

Abstract

Two different in-house software tools for numerical modelling of structures with a very high refractive index contrast and a strong χ (3) nonlinearity are briefly presented. Results of their application for modelling nonlinear nanophotonic and nanoplasmonic directional couplers based on slot waveguide geometry are successfully mutually compared and assessed.

Keywords

Nonlinear optics Integrated optics Nanophotonics Plasmonics All-optical switching Numerical modelling Optical waveguides Coupled-mode theory Kerr-nonlinearity Beam propagation method Slot waveguides 

Notes

Acknowledgments

J.P. acknowledges support of the Ministry of Education, Youth, and Sports of the Czech Republic (Project LD14008) and CEITEC–Central European Institute of Technology (Project CZ.1.05/1.1.00/02.0068), in the framework of European Regional Development Fund.

References

  1. Čtyroký, J.: Efficient boundary conditions for bidirectional propagation algorithm based on Fourier series. J. Lightwave Technol. 27, 2575–2582 (2009)CrossRefADSGoogle Scholar
  2. Čtyroký, J.: 3-D Bidirectional propagation algorithm based on Fourier series. J. Lightwave Technol. 30, 3699–3708 (2012)CrossRefADSGoogle Scholar
  3. Čtyroký, J., Kwiecien, P., Richter, I.: Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution. J. Lightwave Technol. 28, 2969–2976 (2010)CrossRefADSGoogle Scholar
  4. Čtyroký, J., Kwiecien, P., Richter, I.: Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier modal methods. J. Eur. Opt. Soc. 8, 13024-1–13024-6 (2013)Google Scholar
  5. Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Nonlinear plasmonic slot waveguides. Opt. Express 16, 21209–21214 (2008)CrossRefADSGoogle Scholar
  6. Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Nonlinear plasmonic slot waveguides: erratum. Opt. Express 17, 4833 (2009)Google Scholar
  7. Deng, H., Yevick, D.: The nonunitarity of finite-element beam propagation algorithms. IEEE Photonics Technol. Lett. 17, 1429–1431 (2005)CrossRefADSGoogle Scholar
  8. Fujii, M., Leuthold, J., Freude, W.: Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technol. Lett. 21, 362–364 (2009)CrossRefADSGoogle Scholar
  9. Fujisawa, T., Koshiba, M.: Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides. J. Lightwave Technol. 20, 1876–1884 (2002)CrossRefADSGoogle Scholar
  10. Fujisawa, T., Koshiba, M.: Guided modes of nonlinear slot waveguides. IEEE Photonics Technol. Lett. 18, 1530–1532 (2006)CrossRefADSGoogle Scholar
  11. Granet, G.: Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J. Opt. Soc. Am. A 16, 2510–2516 (1999)MathSciNetCrossRefADSGoogle Scholar
  12. He, T., Cheng, Y., Du, Y., Mo, Y.: Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films. Opt. Commun. 275, 240–244 (2007)CrossRefADSGoogle Scholar
  13. Huang, W.-P., Mu, J.: Complex coupled-mode theory for optical waveguides. Opt. Express 17, 19134–19152 (2009)CrossRefADSGoogle Scholar
  14. Hugonin, J.P., Lalanne, P.: Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A 22, 1844–1849 (2005)MathSciNetCrossRefADSGoogle Scholar
  15. Jensen, S.M.: The non-linear coherent coupler. IEEE J. Quantum Electron. 18, 1580–1583 (1982)CrossRefADSGoogle Scholar
  16. Komatsu, M-a, Saitoh, K., Koshiba, M.: Design of highly-nonlinear horizontal slot waveguide with low and flat dispersion. Opt. Commun. 298, 180–184 (2013a)CrossRefADSGoogle Scholar
  17. Komatsu, M., Saitoh, K., Koshiba, M.: Design of highly-nonlinear horizontal slot waveguide with low and flat dispersion. Opt. Commun. 298–299, 180–184 (2013b)CrossRefGoogle Scholar
  18. Koshiba, M., Tsuji, Y.: Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightwave Technol. 18, 737–743 (2000)CrossRefADSGoogle Scholar
  19. Li, L.: New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A 14, 2758–2767 (1997)CrossRefADSGoogle Scholar
  20. Li, Z.Y., Ho, K.M.: Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides. Phys. Rev. B 68, 245117 (2003)Google Scholar
  21. Lin, Q., Zhang, J., Piredda, G., Boyd, R.W., Fauchet, P.M., Agrawal, G.P.: Dispersion of silicon nonlinearities in the near infrared region. Appl. Phys. Lett. 91, 21111 (2007)Google Scholar
  22. Muellner, P., Wellenzohn, M., Hainberger, R.: Nonlinearity of optimized silicon photonic slot waveguides. Opt. Express 17, 9282–9287 (2009)CrossRefADSGoogle Scholar
  23. Petracek, J.: Nonlinear directional coupling between plasmonic slot waveguides. Appl. Phys. B Lasers Optics 112, 593–598 (2013)CrossRefADSGoogle Scholar
  24. Pitilakis, A., Kriezis, E.E.: Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. J. Opt. Soc. Am. B: Opt. Phys. 30, 1954–1965 (2013)CrossRefADSGoogle Scholar
  25. Salgueiro, J.R., Kivshar, Y.S.: Complex modes in plasmonic nonlinear slot waveguides. J. Opt. 16, 114007 (2014)Google Scholar
  26. Schulz, D., Glingener, C., Bludszuweit, M., Voges, E.: Mixed finite element beam propagation method. J. Lightwave Technol. 16, 1336–1341 (1998)CrossRefADSGoogle Scholar
  27. Silberberg, A., Stegeman, G.I.: Nonlinear coupling of waveguide modes. Appl. Phys. Lett. 50, 801–803 (1987)CrossRefADSGoogle Scholar
  28. Silberstein, E., Lalanne, P., Hugonin, J.P., Cao, Q.: Use of grating theories in integrated optics. J. Opt. Soc. Am. A 18, 2865–2875 (2001)CrossRefADSGoogle Scholar
  29. Swillam, M.A., Tawfik, S.A.: Plasmonic slot waveguides with core nonlinearity. Plasmonics 9, 409–413 (2014)CrossRefGoogle Scholar
  30. Tsilipakos, O., Pitilakis, A., Tasolamprou, A.C., Yioultsis, T.V., Kriezis, E.E.: Computational techniques for the analysis and design of dielectric-loaded plasmonic circuitry. Opt. Quantum Electron. 42, 541–555 (2011)CrossRefGoogle Scholar
  31. Tsuji, Y., Koshiba, M.: Adaptive mesh generation for full-vectorial guided-mode and beam-propagation solutions. J. Sel. Top. Quantum Electron. 6, 163–169 (2000)CrossRefGoogle Scholar
  32. Vallaitis, T., Bogatscher, S., Alloatti, L., Dumon, P., Baets, R., Scimeca, M.L., Biaggio, I., Diederich, F., Koos, C., Freude, W., Leuthold, J.: Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. Opt. Express 17, 17357–17368 (2009)CrossRefADSGoogle Scholar
  33. Walasik, W., Renversez, G., Kartashov, Y.V.: Stationary plasmon-soliton waves in metal-dielectric nonlinear planar structures: modeling and properties. Phys. Rev. A 89, 23816 (2014)Google Scholar
  34. Zhang, L., Yue, Y., Xiao-Li, Y., Wang, J., Beausoleil, R.G., Willner, A.E.: Flat and low dispersion in highly nonlinear slot waveguides. Opt. Express 18, 13187–13193 (2010)CrossRefADSGoogle Scholar
  35. Zhang, W., Serna, S., Dubreuil, N., Cassan, E.: Nonlinear optimization of slot Si waveguides: TPA minimization with FOMTPA up to 4.25. Opt. Lett. 40, 1212–1215 (2015)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pavel Koška
    • 1
  • Jiří Petráček
    • 2
    • 3
  • Pavel Kwiecien
    • 4
  • Jaroslav Luksch
    • 2
  • Ivan Richter
    • 4
  • Jiří Čtyroký
    • 1
  1. 1.Institute of Photonics and Electronics, CASPrague 8Czech Republic
  2. 2.Faculty of Mechanical Engineering, Institute of Physical EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.CEITEC - Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  4. 4.Department of Physical Electronics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePraha 1Czech Republic

Personalised recommendations