Optical and Quantum Electronics

, Volume 47, Issue 9, pp 3193–3200 | Cite as

Influence of the size-dependent permittivity of metal inclusions on the optical characteristics of a one-dimensional photonic crystal with a nanocomposite defect

  • Sergey Moiseev
  • Vladimir Ostatochnikov


The spectral characteristics of a one-dimensional photonic crystal structure with a defect nanocomposite layer that consists of metallic nanoparticles distributed in a transparent matrix are theoretically studied. The defect mode shape inside the photonic band gap is found to depend substantially on the nanoparticle size and concentration in the defect layer.


Photonic crystal Defect modes Plasmonic nanocomposite Metal nanoparticles Surface plasmon resonance Size effect 



This work was supported by the Ministry of Education and Science of the Russian Federation (Project No. 14.Z50.31.0015 and State Contract No. 3.2202.2014/K). V. Ostatochnikov acknowledges the ‘Support for Research’ Programme.


  1. Aly, A.H., Elsayed, H.A.: Defect mode properties in a one-dimensional photonic crystal. Phys. B 407(1), 120–125 (2012)CrossRefADSGoogle Scholar
  2. Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1999)CrossRefGoogle Scholar
  3. Capolino, F.: Theory and Phenomena of Metamaterials. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  4. Khlebtsov, N.G.: Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron. 38(6), 504–529 (2008)CrossRefADSGoogle Scholar
  5. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995)CrossRefGoogle Scholar
  6. Liznev, E.O., Dorofeenko, A.V., Huizhe, L., Vinogradov, A.P., Zouhdi, S.: Epsilon-near-zero material as a unique solution to three different approaches to cloaking. Appl. Phys. A. 100(2), 321–325 (2010)CrossRefADSGoogle Scholar
  7. Moiseev, S.G.: Active Maxwell Garnett composite with the unit refractive index. Phys. B 405(14), 3042–3045 (2010)CrossRefADSGoogle Scholar
  8. Moiseev, S.G.: Composite medium with silver nanoparticles as an anti-reflection optical coating. Appl. Phys. A 103(3), 619–622 (2011)MathSciNetCrossRefADSGoogle Scholar
  9. Moiseev, S.G., Ostatochnikov, V.A., Sementsov, D.I.: Defect mode suppression in a photonic crystal structure with a resonance nanocomposite layer. Quantum Electron. 42(6), 557–560 (2012)CrossRefADSGoogle Scholar
  10. Oraevskii, A.N., Protsenko, I.E.: Optical properties of heterogeneous media. Quantum Electron. 31, 252–256 (2001)CrossRefADSGoogle Scholar
  11. Spanier, J.E., Herman, I.P.: Use of hybrid phenomenological and statistical effective medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Phys. Rev. B 61(15), 10437–10450 (2000)CrossRefADSGoogle Scholar
  12. Vetrov, S.Y., Avdeeva, A.Y., Timofeev, I.V.: Spectral properties of a one-dimensional photonic crystal with a resonant defect nanocomposite layer. J. Exp. Theor. Phys. 113(5), 755–761 (2011)CrossRefADSGoogle Scholar
  13. Vetrov, S.Y., Pankin, P.S., Timofeev, I.V.: Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion. Quantum Electron. 44(9), 881–884 (2014)CrossRefADSGoogle Scholar
  14. Wu, C.-J., Wang, Z.-H.: Properties of defect modes in one-dimensional photonic crystals. Prog. Electromagn. Res. 103, 169–184 (2010)CrossRefGoogle Scholar
  15. Yannopapas, V., Modinos, A., Stefanou, N.: Scattering and absorption of light by periodic and nearly periodic metallodielectric structures. Opt. Quantum Electron. 34(1–3), 227–234 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Ulyanovsk State UniversityUlyanovskRussia
  2. 2.Ulyanovsk Branch, Kotel’nikov Institute of Radio-Engineering and ElectronicsRussian Academy of SciencesUlyanovskRussia

Personalised recommendations