Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 8, pp 3081–3090 | Cite as

Photosensitizer doped colloidal mesoporous silica nanoparticles for three-photon photodynamic therapy

  • Dongyu Li
  • Hequn Zhang
  • Liliang Chu
  • Xinyuan Zhao
  • Jun Qian
Article

Abstract

Multiphoton microscopy and nanoparticle-assisted photodynamic therapy are two important areas in biophotonics research. In this paper, we combined these two technologies together. Photosensitizer (HPPH) doped colloidal mesoporous silica nanoparticles were synthesized and systematically characterized. Based on a confocal microscope equipped with a 1560 nm femtosecond laser, we showed: (1) direct three-photon luminescence from HPPH doped nanoparticles, which were uptaken by tumor cells, and (2) cytotoxicity towards tumor cells by HPPH under three-photon excitation. Nanoparticle-assisted three-photon photodynamic therapy can be a promising technology for disease diagnosis and in vivo/clinical therapy.

Keywords

Multiphoton processes Photodynamic therapy Nanomaterials 

Notes

Acknowledgments

This work was supported by National Basic Research Program of China (973Program; 2011CB503700 and 2013CB834704), the National Natural Science Foundation of China (61275190), the Program of Zhejiang Leading Team of Science and Technology Innovation (2010R50007), the Fundamental Research Funds for the Central Universities, and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology).

References

  1. Arriagada, F.J., Osseo-Asare, K.: Synthesis of nanosize silica in aerosol OT reverse microemulsions. J. Colloid. Interf. Sci. 170(1), 8–17 (1995)CrossRefGoogle Scholar
  2. Badley, R.D., Ford, W.T., McEnroe, F.J., Assink, R.A.: Surface modification of colloidal silica. Langmuir 6(4), 792–801 (1990)CrossRefGoogle Scholar
  3. Choi, J., Burns, A.A., Williams, R.M., Zhou, Z., Flesken-Nikitin, A., Zipfel, W.R., Wiesner, U., Nikitin, A.Y.: Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J. Biomed. Opt. 12(6), 064007 (2007)Google Scholar
  4. Henderson, B.W., Bellnier, D.A., Greco, W.R., Sharma, A., Pandey, R.K., Vaughan, L.A., Dougherty, T.J.: An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer. Res. 57(18), 4000–4007 (1997)Google Scholar
  5. Horton, N.G., Wang, K., Kobat, D., Clark, C.G., Wise, F.W., Schaffer, C.B., Xu, C.: In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7(3), 205–209 (2013)CrossRefADSGoogle Scholar
  6. Jain, T.K., Roy, I., De, T.K., Maitra, A.: Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J. Am. Chem. Soc. 120(43), 11092–11095 (1998)CrossRefGoogle Scholar
  7. Kachynski, A.V., Pliss, A., Kuzmin, A.N., Ohulchanskyy, T.Y., Baev, A., Qu, J., Prasad, P.N.: Photodynamic therapy by in situ nonlinear photon conversion. Nat. Photonics 8(6), 455–461 (2014)CrossRefADSGoogle Scholar
  8. Kim, S., Ohulchanskyy, T.Y., Pudavar, H.E., Pandey, R.K., Prasad, P.N.: Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 129(9), 2669–2675 (2007a)CrossRefGoogle Scholar
  9. Kim, S., Huang, H., Pudavar, H.E., Cui, Y., Prasad, P.N.: Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging. Chem. Mater. 19(23), 5650–5656 (2007b)CrossRefGoogle Scholar
  10. Lal, M., Levy, L., Kim, K.S., He, G.S., Wang, X., Min, Y.H., Prasad, P.N.: Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence. Chem. Mater. 12(9), 2632–2639 (2000)CrossRefGoogle Scholar
  11. Law, W.C., Yong, K.T., Roy, I., Xu, G., Ding, H., Bergey, E.J., Prasad, P.N.: Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112(21), 7972–7977 (2008)CrossRefGoogle Scholar
  12. Pass, H.I.: Photodynamic therapy in oncology: mechanisms and clinical use. J. Natl. Cancer. 85(6), 443–456 (1993)CrossRefGoogle Scholar
  13. Prasad, P.N.: Introduction to Biophotonics. Wiley, New York (2004)Google Scholar
  14. Qian, J., Wang, D., Cai, F., Zhan, Q., Wang, Y., He, S.: Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 33(19), 4851–4860 (2012)CrossRefGoogle Scholar
  15. Roy, I., Ohulchanskyy, T.Y., Pudavar, H.E., Bergey, E.J., Oseroff, A.R., Morgan, J., Prasad, P.N.: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 125(26), 7860–7865 (2003)CrossRefGoogle Scholar
  16. Roy, I., Ohulchanskyy, T.Y., Bharali, D.J., Pudavar, H.E., Mistretta, R.A., Kaur, N., Prasad, P.N.: Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA 102(32), 11539–11544 (2005)CrossRefADSGoogle Scholar
  17. Spiller, W., Kliesch, H., Woehrle, D., Hackbarth, S., Roeder, B., Schnurpfeil, G.: Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J. Porphyr. Phthalocyanines 2, 145 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dongyu Li
    • 1
  • Hequn Zhang
    • 1
  • Liliang Chu
    • 1
  • Xinyuan Zhao
    • 3
  • Jun Qian
    • 1
    • 2
  1. 1.State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing TechnologiesZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology (SCUT)GuangzhouChina
  3. 3.Bioelectromagnetics Laboratory, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations