Optical and Quantum Electronics

, Volume 47, Issue 8, pp 2881–2888 | Cite as

High-resolution, low-injection-signal-power optical sampling

  • Feitao Li
  • Yuanshan Liu
  • Wei Zhao


We have demonstrated a high-resolution, low-injection-signal-power optical sampling system using a 20-m-length dispersion-flattened photonics crystal fiber as optical sampling gate, and employing bridge-form low noise optical fiber amplifier. Optical pulse trains with −35 dBm input power and 1.25 ps interval were clearly displayed by using our all optical sampling system. To measure the temporal resolution of system accurately, optical pulse trains from a commercial 40 GHz actively mode-locked fiber laser, were injected into the optical sampling system and an autocorrelator with 5-fs resolution, respectively. 1.02 and 0.83 ps pulse-width were obtained by using our optical sampling system and the autocorrelator, respectively. These measured results show that the resolution of the system is as high as 0.6 ps.


Optical sampling Time division multiplexing Mode-lock laser 



This work was supported by Natural Science Foundation of China (61275164), the Chinese Academy of Sciences (CAS) through a project of the Vital Instrument Research Program (YZ200759) and the CAS/SAFEA International Partnership Program for Creative Research Teams.


  1. Anderson, P.A., Tokle, T., Geng, Y., Peucheret, C., Jepppesen, P.: Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber. IEEE Photon. Technol. Lett. 17, 1908–1910 (2005)CrossRefADSGoogle Scholar
  2. Chow, K.K., Shu, C., Lin, C., Bjarklev, A.: Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber. IEEE Photon. Technol. Lett. 17, 624–626 (2005)CrossRefADSGoogle Scholar
  3. Chow, K.K., Shu, C., Lin, C., Bjarklev, A.: All-optical wavelength multicasting with extinction ratio enhancement using pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber. Proc. IEEE J. Sel. Top. Quantum Electron. 12, 838–842 (2006)CrossRefGoogle Scholar
  4. Deng, K.L., Runser, R.J., Glesk, I., Prucnal, P.R.: Single-shot optical sampling oscilloscope for ultrafast optical waveforms. IEEE Photon. Technol. Lett. 10, 397–399 (1998)CrossRefADSGoogle Scholar
  5. Diez, S., Ludwig, R., Schmidt, C., Feiste, U., Weber, H.G.: 160 Gbit/s optical sampling by a novel ultra-broadband switch based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 11, 1402–1405 (1999)CrossRefADSGoogle Scholar
  6. Ji, H., Hu, H., Galili, M., Oxenlowe, L.K., Pu, M., Yvind, K., Hvam, J.M., Jeppesen, P.: Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in silicon nanowire. In: Proceedings of the 2010 Optical Fiber Communication Conference Paper PDPC7 (2010)Google Scholar
  7. Jungerman, R.L., Lee, G., Buccafusca, O., Kaneko, Y., Itagaki, N., Shioda, R., Harada, A., Nihei, Y., Sucha, G.: 1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase. IEEE Photon. Technol. Lett. 14, 1148–1150 (2002)CrossRefADSGoogle Scholar
  8. Kang, I., Dreyer, K.: Sensitive 320 Gb/s eye diagram measurement via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer. Electron. Lett. 39, 1081–1091 (2003)CrossRefGoogle Scholar
  9. Kwok, C.H., Lee, S.H., Chow, K.K., Lin, C.: Photonic crystal fibre based all-optical modulation format conversions between NRZ and RZ with hybrid clock recovery from a PRZ signal. IET Optoelectron. 1, 47–53 (2007)CrossRefGoogle Scholar
  10. Lenihan, A.S., Salem, R., Murphy, T.E., Carter, G.M.: All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber. IEEE Photon. Technol. Lett. 18, 1329–1331 (2006)CrossRefADSGoogle Scholar
  11. Liu, Y.S., Zhang, J.G., Zhao, W.: Design of wideband, high-resolution optical waveform samplers based on a dispersion-flattened highly nonlinear photonic crystal fiber. J. Opt. A Pure Appl. Opt. 14, 2040–8978 (2012)Google Scholar
  12. Maria, M., Jacek, S., Marcin, M.: Arbitrary pulse shaping in Er-doped fiber amplifiers—possibilities and limitations. Opt. Laser Technol. 60, 8–13 (2014)CrossRefADSGoogle Scholar
  13. Mats, S., Greg, R., Andrew, L.A., Andreson, Peter A.: Quasi-real-time optical sampling scheme for high-speed signal acquisition and processing. IEEE Photon. Technol. Lett. 25, 1041–1135 (2013)Google Scholar
  14. NL-1550-POS-1 Nonlinear Photonic Crystal Fiber
  15. Richard, I.L., Michael, N.Z., David, N.P.: Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figure. IEEE Photon. Technol. Lett. 12, 1345–1347 (1992)Google Scholar
  16. Salem, R., Foster, M.A., Turner-Foster, A.C., Geraghty, D.F., Lipson, M., Gaeta, A.L.: High-speed optical sampling using a silicon-chip temporal magnifier. Opt. Express 17, 4324–4329 (2009)CrossRefADSGoogle Scholar
  17. Schmidt, C., Schubert, C., Watanabe, S., Futami, F., Ludwig, R., Weber, H.G.: 320 Gb/s all-optical eye diagram sampling using gain-transparent ultrafast nonlinear interferometer. In: Proceedings of the 28th European Conference on Optical Communication (ECOC’02), pp. 1–10. Copenhagen, Denmark (2002)Google Scholar
  18. Shake, I., Takara, H., Kawanishi, S., Yamabayashi, Y.: Optical signal quality monitoring method based on optical sampling. Electron. Lett. 34, 2152–2154 (1998)CrossRefGoogle Scholar
  19. Takara, H., Kawanishi, S., Saruwatari, M.: Optical signal eye diagram measurement with subpicosecond resolution using optical sampling. Electron. Lett. 32, 1399–1400 (1996)CrossRefGoogle Scholar
  20. Tokle, T., Anderson, P.A., Geng, Y., Zsigri, B., Peucheret, C., Jepppesen, P.: Generation, transmission and wavelength conversion an 80 Gbit/s RZ-DBPSK-ASK signal. Conference on Lasers and Electro-Optics. p. 294 (2005)Google Scholar
  21. Westlund, M., Sunnerud, H., Olsson, B.E., Andrekson, P.A.: Simple scheme for polarization-independent all-optical sampling. IEEE Photon. Technol. Lett. 16, 1041–1135 (2004)CrossRefGoogle Scholar
  22. Westlund, M., Sunerud, H., Karlsson, M., Anderson, P.A.: Software-synchronized all-optical sampling for fiber communication systems. J. Lightwave Technol. 23, 1088–1099 (2005)CrossRefADSGoogle Scholar
  23. Yamada, N., Nogiwa, S., Ohta, H.: 640-Gb/s optical-time-division-multiplexing signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses. IEEE Photon. Technol. Lett. 16, 1125–1127 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM)University of Chinese Academy of SciencesXi’anPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of Sciences (CAS)BeijingPeople’s Republic of China

Personalised recommendations